Емкостной датчик влажности почвы своими руками. Датчик влажности почвы: принцип работы и сборка своими руками. Системы автоматизации полива

Не все владельцы садов и огородов имеют возможность каждый день ухаживать за своими посадками. Тем не менее без своевременного полива нельзя рассчитывать на хороший урожай.

Решением проблемы станет автоматическая система, позволяющая добиться того, чтобы грунт на вашем участке сохранял требуемую степень влажности на протяжении всего вашего отсутствия. Главной составляющей частью любого автополива является датчик влажности почвы.

Понятие датчика влажности

Датчик влажности ещё имеет другие названия. Его называют влагомером или сенсором влажности.


Как видно на фото датчиков влажности почвы, такое устройство представляет собой прибор, состоящий из двух проводов, подключённых к слабому источнику электроэнергии.

При росте влажности между электродами сила тока и сопротивление снижаются и наоборот, если воды в грунте становится недостаточно, данные показатели увеличиваются. Устройство включается простым нажатием кнопки.

Следует учитывать, что электроды будут находиться во влажной почве. Поэтому включение прибора рекомендуется осуществлять через ключ. Такой приём уменьшит отрицательное воздействие коррозии.

Зачем необходим данный прибор

Влагомеры устанавливают не только на открытом грунте, но и в теплицах. Контроль времени полива – вот для чего используют датчики влажности почвы. Вам не понадобиться ничего делать, лишь включить устройство. После оно будет работать без вашего участия.

Однако огородникам и садоводам следует отслеживать состояние электродов, поскольку они могут подвергнуться коррозионному разрушению и в результате выйти из строя.

Виды датчиков влажности почвы

Рассмотрим, какие бывают датчики влажности почвы. Их принято делить на:

Емкостные. Их конструкция схожа с воздушным конденсатором. В основе работы лежит изменение диэлектрических свойств воздуха в зависимости от его влажности, которое вызывает увеличение или снижение ёмкости.

Резистивные. Принцип их действия заключается в изменении сопротивления гигроскопического материала в зависимости от того, сколько влаги в нём содержится.

Психометрические. Принцип работы и схема устройства таких датчиков будут посложнее. В основе лежит физическое свойство потери тепла при испарении. Прибор состоит из сухого и влажного детектора. По разнице температур между ними и судят о количестве водяных паров в воздухе.

Аспирационные. Данный вид во многом схож с предыдущим, отличие составляет вентилятор, который служит для нагнетания воздушной смеси. Аспирационные приборы определения влажности используют в местах со слабым или прерывистым движением воздуха.

Какой датчик влажности выбрать зависит от каждого конкретного случая. На выбор прибора влияют и особенности установленной у вас системы автоматического полива и ваши финансовые возможности.


Материалы, необходимые для создания датчика своими руками

Если вы решили заняться изготовлением влагомера собственноручно, то вам нужно подготовить:

  • электроды диаметром 3-4 мм – 2 шт.;
  • текстолитовое основание;
  • гайки и шайбы.

Инструкция по изготовлению

Как же сделать датчик влажности почвы своими руками? Вот краткий инструктаж:

  • Шаг 1. Прикрепляем электроды к основанию.
  • Шаг 2. Нарезаем на концах электродов резьбу и заостряем с обратной стороны для более лёгкого погружения в почву.
  • Шаг.3. Делаем в основании отверстия и вкручиваем в них электроды. В качестве крепёжных элементов используем гайки и шайбы.
  • Шаг 4. Подбираем нужные провода, которые подойдут к шайбам.
  • Шаг 5. Изолируем электроды. Углубляем их в грунт на 5 – 10 см.

Обратите внимание!

Для работы датчика требуются: сила тока в 35 мА и напряжение в 5 В. В конце подключаем прибор, используя три провода, которые присоединяем к микропроцессору.

Контроллер позволяет скомбинировать датчик с зуммером. После этого подаётся сигнал, если количество влаги в почве резко уменьшается. Альтернативой звукового сигнала может служить загорание лампочки.

Датчик влажности почвы, без сомнения, вещь в хозяйстве нужная. Если у вас есть дача или огород, то непременно озаботьтесь его приобретением. Причём прибор вовсе не обязательно покупать, поскольку можно легко сделать самим.

Фото датчиков влажности почвы

Обратите внимание!

Обратите внимание!

Избавит от однообразной повторяющейся работы, а избежать избытка воды поможет датчик влажности почвы - своими руками такой прибор собрать не так уж сложно. На помощь садоводу приходят законы физики: влага в грунте становится проводником электрических импульсов, и чем ее больше, тем ниже сопротивление. При понижении влажности сопротивление увеличивается, и это помогает отследить оптимальное время полива.

Конструкция датчика влажности почвы представляет собой два проводника, которые подключаются к слабому источнику энергии, в схеме должен присутствовать резистор. Как только количество влаги в пространстве между электродами растет, сопротивление снижается, и сила тока увеличивается.

Влага высыхает – сопротивление растет, сила тока снижается.

Поскольку электроды будут находиться во влажной среде, их рекомендуется включать через ключ, чтобы уменьшить разрушительное влияние коррозии. В обычное время система стоит выключенной и запускается только для проверки влажности нажатием кнопки.

Датчики влажности почвы такого типа можно устанавливать в теплицах – они обеспечивают контроль за автоматическим поливом , поэтому система может функционировать вообще без участия человека. В этом случае система постоянно будет находиться в рабочем состоянии, но состояние электродов придется контролировать, чтобы они не пришли в негодность под воздействием коррозии. Аналогичные устройства можно устанавливать на грядках и газонах на открытом воздухе – они позволят мгновенно получить нужную информацию.

При этом система оказывается намного точнее простого тактильного ощущения. Если человек будет считать землю полностью сухой, датчик покажет до 100 единиц влажности грунта (при оценке в десятеричной системе), сразу после полива это значение вырастает до 600-700 единиц.

После этого датчик позволит контролировать изменение содержания влажности в грунте.

Если датчик предполагается использовать на улице, его верхнюю часть желательно тщательно загерметизировать, чтобы не допустить искажения информации. Для этого ее можно покрыть водонепроницаемой эпоксидной смолой.

Конструкция датчика собирается следующим образом:

  • Основная часть – два электрода, диаметр которых составляет 3-4 мм, они прикрепляются к основанию, изготовленному из текстолита или другого материала, защищенного от коррозии.
  • На одном конце электродов нужно нарезать резьбу, с другой стороны они делаются заостренными для более удобного погружения в грунт.
  • В пластине из текстолита просверливаются отверстия, в которые вкручиваются электроды, их нужно закрепить гайками с шайбами.
  • Под шайбы нужно завести исходящие провода, после чего электроды изолируются. Длина электродов, которые будут погружаться в грунт, составляет около 4-10 см. в зависимости от используемой емкости или открытой грядки.
  • Для работы датчика потребуется источник тока силой 35 мА, система требует напряжения 5В. В зависимости от количества влаги в почве диапазон возвращаемого сигнала составит 0-4,2 В. Потери на сопротивление продемонстрируют количество воды в грунте.
  • Подключение датчика влажности почвы проводится через 3 провода к микропроцессору, для этой цели можно приобрести, например, Arduino. Контроллер позволит соединить систему с зуммером для подачи звукового сигнала при чрезмерном уменьшении влажности почвы, или к светодиоду, яркость освещения будет меняться при изменениях в работе датчика.

Такое самодельное устройство может стать частью автополива в системе "Умный дом", например, с использованием Ethernet-контроллера MegD-328. Web-интерфейс показывает уровень влажности в 10-битной системе: диапазон от 0 до 300 говорит о том, что земля совершенно сухая, 300-700 – в почве достаточно влаги, более 700 – земля мокрая, и полив не требуется.

Конструкция, состоящая из контроллера, реле и элемента питания убирается в любой подходящий корпус, для которого можно приспособить любую пластиковую коробочку.

В домашних условиях использование такого датчика влажности будет очень простым и вместе с тем надежным.

Применение датчика влажности грунта может быть самым разнообразным. Наиболее часто они используются в системах автополива и ручного полива растений:

  1. Их можно установить в цветочных горшках, если растения чувствительны к уровню воды в грунте. Если речь идет о суккулентах, например, о кактусах, необходимо вбирать длинные электроды, которые будут реагировать на изменение уровня влажности непосредственно у корней. Их также можно использовать для и других растений с хрупкой . Подключение к светодиоду позволит точно определить, когда пора проводить .
  2. Они незаменимы для организации полива растений . По аналогичному принципу также собираются датчики влажности воздуха, которые нужны для запуска в работу системы опрыскивания растений. Все это позволит автоматическим образом обеспечить полив растений и нормальный уровень атмосферной влажности.
  3. На даче использование датчиков позволит не держать в памяти время полива каждой грядки, электротехника сама расскажет о количестве воды в грунте. Это позволит не допустить избыточного полива, если недавно прошел дождь.
  4. Применение датчиков очень удобно и в некоторых других случаях. К примеру, они позволят контролировать влажность грунта в подвале и под домом вблизи фундамента. В квартире его можно установить под мойкой: если труба начнет капать, об этом тут же сообщит автоматика, и можно будет избежать затопления соседей и последующего ремонта.
  5. Простое устройство датчика позволит всего за несколько дней полностью оборудовать системой оповещения все проблемные участки дома и сада. Если электроды достаточно длинные, с их помощью можно будет контролировать уровень воды, к примеру, в искусственном небольшом водоеме.

Самостоятельное изготовление датчика поможет оборудовать дом автоматической системой контроля с минимальными затратами.

Комплектующие фабричного производства легко приобрести через интернет или в специализированном магазине, большую часть устройств можно собрать из материалов, которые всегда найдутся в доме любителя электротехники.

Больше информации можно узнать из видео.


Самодельный, стабильный датчик влажности почвы для автоматической поливальной установки

Эта статья возникла в связи с постройкой автоматической поливальной машины для ухода за комнатными растениями. Думаю, что и сама поливальная машина может представлять интерес для самодельщика, но сейчас речь пойдёт о датчике влажности почвы. https://сайт/


Самые интересные ролики на Youtube


Пролог.

Конечно, прежде чем изобретать велосипед, я пробежался по Интернету.

Датчики влажности промышленного производства оказались слишком дороги, да и мне так и не удалось найти подробного описания хотя бы одного такого датчика. Мода на торговлю «котами в мешках», пришедшая к нам с Запада, уже похоже стала нормой.


Описания самодельных любительских датчиков в сети хотя и присутствуют, но все они работают по принципу измерения сопротивления почвы постоянному току. А первые же эксперименты показали полную несостоятельность подобных разработок.

Собственно, это меня не очень удивило, так как я до сих пор помню, как в детстве пытался измерять сопротивление почвы и обнаружил в ней... электрический ток. То есть стрелка микроамперметра фиксировала ток, протекающий между двумя электродами, воткнутыми в землю.


Эксперименты, на которые пришлось потратить целую неделю, показали, что сопротивление почвы может довольно быстро меняться, причём оно может периодически увеличиваться, а затем уменьшаться, и период этих колебаний может быть от нескольких часов до десятков секунд. Кроме этого, в разных цветочных горшках, сопротивление почвы меняется по-разному. Как потом выяснилось, жена подбирает для каждого растения индивидуальный состав почвы.


Вначале я и вовсе отказался от измерения сопротивления почвы и даже начал сооружать индукционный датчик, так как нашёл в сети промышленный датчик влажности, про который было написано, что он индукционный. Я собирался сравнивать частоту опорного генератора с частотой другого генератора, катушка которого одета на горшок с растением. Но, когда начал макетировать устройство, вдруг вспомнил, как однажды попал под «шаговое напряжение». Это и натолкнуло меня на очередной эксперимент.

И действительно, во всех, найденных в сети самодельных конструкциях, предлагалось замерять сопротивление почвы постоянному току. А что, если попытаться измерить сопротивление переменному току? Ведь по идее, тогда вазон не должен превращаться в "аккумулятор".

Собрал простейшую схему и сразу проверил на разных почвах. Результат обнадёжил. Никаких подозрительных поползновений в сторону увеличения или уменьшения сопротивления не обнаружилось даже в течение нескольких суток. Впоследствии, данное предположение удалось подтвердить на действующей поливальной машине, работа которой была основана на подобном принципе.

Электрическая схема порогового датчика влажности почвы.

В результате изысканий появилась эта схема на одной единственной микросхеме. Подойдёт любая из перечисленных микросхем: К176ЛЕ5, К561ЛЕ5 или CD4001A. У нас эти микросхемы продают всего по 6 центов.


Датчик влажности почвы представляет собой пороговое устройство, реагирующее на изменение сопротивления переменному току (коротким импульсам).

На элементах DD1.1 и DD1.2 собран задающий генератор, вырабатывающий импульсы с интервалом около 10 секунд. https://сайт/

Конденсаторы C2 и C4 разделительные. Они не пропускают в измерительную цепь постоянный ток, которые генерирует почва.

Резистором R3 устанавливается порог срабатывания, а резистор R8 обеспечивает гистерезис усилителя. Подстроечным резистором R5 устанавливается начальное смещение на входе DD1.3.


Конденсатор C3 – помехозащищающий, а резистор R4 определяет максимальное входное сопротивление измерительной цепи. Оба эти элемента снижают чувствительность датчика, но их отсутствие может привести к ложным срабатываниям.

Не стоит также выбирать напряжение питания микросхемы ниже 12 Вольт, так как это снижает реальную чувствительность прибора из-за уменьшения соотношения сигнал/помеха.


Внимание!

Я не знаю, может ли длительное воздействие электрических импульсов оказать вредное воздействие на растения. Данная схема была использована только на стадии разработки поливальной машины.

В для полива растений я использовал другую схему, которая генерирует всего один короткий измерительный импульс в сутки, приуроченный ко времени полива растений.

Всем привет, сегодня в нашей статье мы рассмотрим как сделать датчик влажности почвы своими руками. Причиной самостоятельного изготовления может послужить износ датчика (коррозия, окисление), либо просто невозможность приобрести, долгое ожидание и желание смастерить что-либо своими руками. В моем случае желанием сделать датчик самому послужил износ, дело в том что щуп датчика при постоянной подаче напряжение взаимодействует с почвой и влагой в результате чего окисляется. Например датчики SparkFun покрывают его специальным составом (Electroless Nickel Immersion Gold) для увлечения ресурса работы. Так же что бы продлить жизнь датчику лучше подавать питание на датчик только в момент замеров.
В один "прекрасный" день я обратил внимание что моя система полива увлажняет почву без лишней надобности, при проверке датчика я извлек щуп из почвы и вот что я увидел:

Из-за коррозии между щупами появляется дополнительное сопротивление в результате которого сигнал становиться меньше и arduino считает что почва сухая. По скольку Я использую аналоговый сигнал то схему с цифровым выходом на компараторе я делать не буду для упрощения схемы.

На схеме изображен компаратор датчика влажности почвы, красным цветом отмечена часть которая преобразует аналоговый сигнал в цифровой. Не отмеченная часть это часть необходимая нам для преобразование влажности в аналоговый сигнал, мы ее и будем использовать. Чуть ниже я привел схему подключение щупов к arduino.

Левая часть схемы показывает как щупы подключаются к arduino, а правую часть (с резистором R2) я привел для того что бы показать за счет чего меняются показания АЦП. Когда щупы опущены в землю между ними образуется сопротивление (на схеме я отобразил его условно R2), если почва сухая то сопротивление бесконечно большое, а если влажное то оно стремиться к 0. Так как два сопротивления R1 и R2 образуют делитель напряжение, а средней точкой является выход (out a0) то от величины сопротивления R2 зависит напряжение на выходе. К примеру если сопротивление R2=10Kom то напряжение будет 2,5В. Можно сопротивление запаять на проводах что бы не делать дополнительных развязок, для стабильности показаний можно добавить конденсатор 0,01мкФ между - питания и out. схема подключение следующая:

Поскольку с электрической частью мы разобрались, можно перейти к механической части. Для изготовления щупов лучше использовать материал менее всего подверженного коррозии что бы продлить жизнь датчика. Можно использовать "нержавейку" или оцинкованный метал, форму можно выбрать любую, даже можно использовать два куска проволочки. Я для щупов выбрал "оцинковку", в качестве фиксирующего материал использовал небольшой кусок гетинакса. Так же стоит учесть что настояния между щупами должно быть 5мм-10мм, но не стоит делать больше. На концы оцинковки я напаял провода датчика. Вот что получилось в итоге:

Не стал делать подробный фото отчет, все и так просто. Ну и фото в работе:

Как я уже раньше указывал лучше использовать датчик только в момент измерений. Оптимальный вариант включение через транзисторный ключ, но так как потребление тока у меня составило 0,4мА можно включить на прямую. Для подачи напряжения во время замеров можно подключить контакт датчика VCC к пину ШИМ или использовать цифровой выход на момент измерений подавать высокий (HIGH) уровень, а потом устанавливать низкий. Так же стоит учесть что после подачи напряжения на датчик необходимо выждать некоторое время для стабилизации показаний. Пример через ШИМ:

Int sensor = A0; int power_sensor = 3;

void setup() {
// put your setup code here, to run once:
Serial.begin(9600);
analogWrite(power_sensor, 0);
}

void loop() {

delay(10000);
Serial.print("Suhost" : ");
Serial.println(analogRead(sensor));
analogWrite(power_sensor, 255);
delay(10000);
}

Спасибо всем за внимание!




Я немало обзоров написал про дачную автоматику, а раз речь идет про дачу - то автоматический полив - это одно из приоритетных направлений автоматизации. При этом, всегда хочется учитывать осадки, чтобы не гонять понапрасну насосы и не заливать грядки. Немало копий сломано на пути к беспроблемному получению данных о влажности почвы. В обзоре еще один вариант, устойчивый к внешним воздействиям.


Пара датчиков приехала за 20 дней в индивидуальных антистатических пакетиках:




Характеристики на сайте продавца:):
Бренд:ZHIPU
Тип: Датчик вибрации
Материал: Смесь
Выход: Коммутирующий датчик

Распаковываем:


Провод имеет длину в районе 1-го метра:


Помимо самого датчика в комплект входит управляющая платка:




Длина сенсоров датчика порядка 4 см:


Кончики датчика, похоже на графит - пачкаются черным.
Припаиваем контакты к платке и пробуем подключить датчик:




Самым распространенным датчиком влажности почвы в китайских магазинах является такой:


Многие знают, что через непродолжительное время его съедает внешняя среда. Эффект влияния коррозии можно немного снизить подавая питание непосредственно перед измерением и отключая, при отсутствии измерений. Но это мало что меняет, вот так выглядел мой через пару месяцев использования:




Кто-то пробует использовать толстую медную проволоку или пруты из нержавейки, альтернатива предназначенная специально для агрессивной внешней среды выступает в качестве предмета обзора.

Отложим плату из комплекта в сторону, и займемся самим датчиком. Датчик резистивного типа, меняет свое сопротивление в зависимости от влажности среды. Логично, что без влажной среды сопротивление датчика огромное:


Опустим датчик в стакан с водой и видим, что его сопротивление составит порядка 160 кОм:


Если вынуть, то все вернется в исходное состояние:


Перейдем к испытаниям на земле. В сухой почве видим следующее:


Добавим немного воды:


Еще (примерно литр):


Почти полностью вылил полтора литра:


Долил еще литр и подождал 5 минут:

Плата имеет 4 вывода:
1 + питания
2 земля
3 цифровой выход
4 аналоговый выход
После прозвонки выяснилось, что аналоговый выход и земля напрямую соединены с датчиком, так что, если планируете использовать этот датчик подключая к аналоговому входу, плата не имеет большого смысла. Если нет желания использовать контроллер, то можно использовать цифровой выход, порог срабатывания настраивается потенциометром на плате. Рекомендуемая продавцом схема подключения при использовании цифрового выхода:


При использовании цифрового входа:


Соберем небольшой макет:


Arduino Nano я использовал тут как источник питания, не загружая программу. Цифровой выход подключил к светодиоду. Забавно что светодиоды на плате красный и зеленый горят при любом положении потенциометра и влажности среды датчика, единственное при срабатывании порога, зеленый светит чуть слабже:


Выставив порог получаем, что при достижении заданной влажности на цифровом выходе 0, при недостатки влажности напряжение питания:




Ну раз уж у нас в руках контроллер, то напишем программу для проверки работы аналогового выхода. Аналоговый выход датчика подключим к выводу А1, а светодиод к выводу D9 Arduino Nano.
const int analogInPin = A1; // сенсор const int analogOutPin = 9; // Вывод на светодиод int sensorValue = 0; // считанное значение с сенсора int outputValue = 0; // значение выдаваемое на ШИМ вывод со светодиодом void setup() { Serial.begin(9600); } void loop() { // считываем значение сенсора sensorValue = analogRead(analogInPin); // переводим диапазон возможных значений сесора (400-1023 - установлено экспериметально) // в диапазон ШИМ вывода 0-255 outputValue = map(sensorValue, 400, 1023, 0, 255); // включаем светодиод на заданную яркость analogWrite(analogOutPin, outputValue); // выводим наши цифры Serial.print("sensor = "); Serial.print(sensorValue); Serial.print("\t output = "); Serial.println(outputValue); // задержка delay(2); }
Весь код я прокомментировал, яркость светодиода обратно-пропорциональна влажности детектируемой сенсором. Если необходимо чем-то управлять, то достаточно сравнить полученное значение с определенным экспериментально порогом и, например, включить реле. Единственное, рекомендую обработать несколько значений и использовать среднее для сравнения с порогом, так возможны случайные всплески или спады.
Погружаем датчик и видим:


Вывод контроллера:

Если вынуть то вывод контроллера изменится:

Видео работы данной тестовой сборки:

В целом, датчик мне понравился, производит впечатление устойчивого к воздействию внешней среды, так ли это - покажет время.
Данный датчик не может использоваться как точный показатель влажности (как впрочем и все аналогичные), основным его применением, является определение порога и анализ динамики.

Если будет интересно, продолжу писать про свои дачные поделки.
Спасибо всем, кто дочитал этот обзор до конца, надеюсь кому-то данная информация окажется полезной. Всем полного контроля над влажностью почвы и добра!

Планирую купить +74 Добавить в избранное Обзор понравился +55 +99
error: Content is protected !!