Какие изделия получают с помощью порошковой металлургии. Особенности технологии порошковой металлургии. Технологии получения порошковых быстрорежущих сталей

Порошковая металлургия - метод производства металлических изделий, заключающийся в прессовании гранул порошков металлов, и последующим их спекании. Данное производство позволяет получать изделия с высокой точностью геометрических размеров, поэтому она является альтернативой другим технологиям формообразования изделий, например литью или штамповке. Также, при помощи порошковой металлургии возможно изготовление сплавов или готовых изделий со свойствами, которые невозможно достичь другими процессами производства. Так, например, при помощи порошковой металлургии можно получить сплавы компонентов, которые не растворяются друг в друге в расплавленном состоянии. При помощи данной технологии можно изготавливать твердые сплавы вольфрама, тантала, кобальта, которые другими способами получить достаточно сложно. Порошковая металлургия позволяет получать изделия сложной конфигурации или изделия с высокими или заданными свойствами тепло- и электропроводности.

Основные преимущества порошковой металлургии:

  1. Возможность создания сплавов трудносплавляемых материалов или сплавов, которых другими способами создать трудно
  2. Экономическая целесообразность применения порошковой металлургии. При данном способе производства, по сравнению с литьем и токарной обработкой, образуется гораздо меньше отходов.
  3. Высокая точность геометрических размеров за счет применения высокоточной оснастки при прессовании
  4. При помощи порошковой металлургии возможно получение сплавов с более высоким комплексом механических свойств по сравнению с литьём
  5. Высокая производительность процесса
  6. Широкий, а главное регулируемый диапазон получаемых свойств

Продукция порошковой металлургии применяется во всех областях техники: в машиностроении, приборостроении, горнодобывающей и нефтеперерабатывающей промышленности.

Технология порошковой металлургии

Технологический процесс изготовления изделий при помощи порошковой металлургии сводится к следующим этапам:

  1. Получение исходного сырья - порошков определенной степени дисперсности гранул
  2. Формовка порошков в пресс-формах под давлением. При формовке могут использоваться горячие и холодные способы
  3. Спекание порошковых материалов в термических печах. При проведении процесса обычно используются защитные и вакуумные среды различного давления

Недостатки порошковой металлургии

На сегодняшний день, уровень развития технологического оборудования достиг огромных высот, что устранило практически все препятствия на пути изготовления деталей методом порошковой металлургии. Несколько лет назад возникали проблемы при изготовлении крупногабаритных изделий и заготовок из порошков. Но эта проблема была решена с помощью применения современных изостатов. И на сегодняшний день, кроме высокой стоимости исходного сырья, недостатков порошковая металлургия не имеет.

Порошковая металлургия

Порошковой металлургией называют область техники, охватывающую совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них или их смесей с неметаллическими порошками без расплавления основного компонента.

Из имеющихся разнообразных способов обработки металлов порошковая металлургия занимает особое место, так как позволяет получать не только изделия различных форм и назначений, но и создавать принципиально новые материалы, которые другим путем получить или очень трудно или невозможно. У таких материалов можно получить уникальные свойства, а в ряде случаев существенно повысить экономические показатели производства. При этом способе в большинстве случаев коэффициент использования материала составляет около 100%.

Порошковая металлургия находит широчайшее применение для различных условий работы деталей изделий. Методами порошковой металлургии изготавливают изделия, имеющие специальные свойства: антифрикционные детали узлов трения приборов и машин, конструкционные и фрикционные детали, инструментальные материалы, электротехнические детали для электронной и радиотехнической промышленности, композиционные (жаропрочные и др.) материалы.

Основные преимущества использования порошковой металлургии:

  • – снижает затраты на дальнейшую механическую обработку, которая может быть исключена или существенно уменьшена, получает готовое изделие точное по форме и размерам, обеспечивает высокое качество поверхности изделия;
  • – использует энерго- и ресурсосберегающие технологии, уменьшает количество операций в технологической цепи изготовления продукта, использует более чем 97% стартового сырья, реализует многие последующие сборочные этапы еще на стадии спекания;
  • – позволяет получать изделия с уникальными свойствами, используя многокомпонентные смеси, объединяя металлические и не металлические компоненты: изделия различной пористости (фильтры) с регулируемой проницаемостью, подшипники скольжения с эффектом самосмазывания;
  • – получает более высокие экономические, технические и эксплуатационные характеристики изделий по сравнению с традиционными технологиями;
  • – упрощает зачастую изготовление изделий сложной формы;
  • – обеспечивает прецизионное производство, соответствие размеров в серии изделий.

Порошки металлов применяли и в древнейшие времена. Порошки меди, серебра и золота применяли в красках для декоративных целей в керамике, живописи во все известные времена. При раскопках найдены орудия из железа древних египтян (за 3000 лет до нашей эры), знаменитый памятник из железа в Дели относится к 300 году нашей эры. До 19 века не было известно способов получения высоких температур (около 1600-1800°С). Указанные предметы из железа были изготовлены кричным методом: сначала в горнах при температуре 1000°С восстановлением железной руды углем получали крицу (губку), которую затем многократно проковывали в нагретом состоянии, а завершали процесс нагревом в горне для уменьшения пористости. С появлением доменного производства от крицы отказались и о порошковой металлургии забыли.

Заслуга возрождения порошковой металлургии и превращения в особый технологический метод обработки принадлежит русским ученым П.Г.Соболевскому и В.В.Любарскому, которые в 1826 г., за три года до работ англичанина Воллстана, разработали технологию прессования и спекания платинового порошка. металлургия порошковый изготовление

После первых работ П.Г.Соболевского по разработке процесса изготовления монет из порошка платины, выполненных в России в 1826 - 1827 гг. стало развиваться новое направление в науке - порошковая металлургия. В 1924 г. Т.М.Алексеенко-Сербиным была организована первая лаборатория тугоплавких металлов на Московском электроламповом заводе, а затем создана мощная сеть научных учреждений. После организации Г.А.Меерсоном в 1923 г. на Московском кабельном заводе производства порошка вольфрама и получения в 1932 г. на Ленинградском механическом заводе первых промышленных партий порошка электролитического железа, работы ученых привели к созданию ряда оригинальных процессов изготовления металлических порошков.

Процесс получения железного порошка комбинированным восстановлением окалины газом и сажей в 1948 - 1958 гг. был положен в основу строительства Броварского завода порошковой металлургии (Украина). В 1953 - 1957 гг. организовано производство порошков сложнолегированных сталей и сплавов методом металлотермического восстановления. Разработан метод получения легированных порошков железа диффузионным насыщением. Получены порошки карбонильным методом, механическим измельчением, исследуются процессы получения порошков восстановлением окислов, электролизом водных растворов и расплавленных сред. Внедрены методы получения металлических порошков распылением расплавов.

В настоящее время изготавливаются в промышленном масштабе порошки таких металлов, как железо и его сплавы, никель, медь, кобальт, алюминий, титан, олово, цинк, свинец, магний, вольфрам, молибден, тантал, ниобий и другие. Существенные успехи достигнуты в разработке теоретических основ и технологии процессов прессования и формования изделий из порошков.

Первыми видами изделий из порошков, производство которых было организовано в 1918 г., были медно-графитовые щетки. В дальнейшем создано большое количество электроконтактных материалов на основе серебра с добавками никеля, окиси кадмия, графита; на основе вольфрама с пропиткой медью и ряд других.

В 60-х годах широко развились работы по созданию спеченных конструкционных материалов на железной основе, с пропиткой прессовок медью и ее сплавами, с введением в состав материала углерода в виде графита или порошка белого чугуна, с заполнением пор материала стеклом, что дало повышение прочности до 75 - 80 кг/мм 2 . Применение легированных порошков в сочетании с горячей штамповкой или высокоскоростным холодным прессованием с последующим спеканием позволило получить материалы с прочностью выше 200 кг/мм 2 .

Типовая технология производства заготовки изделий методом порошковой металлургии включает четыре основные операции:

  • – получение порошка исходного материала;
  • – формование заготовок;
  • – спекание;
  • – окончательная обработка.

Каждая из указанных операций оказывает значительное влияние на формирование свойств готового изделия. В настоящее время используют большое количество методов производства металлических порошков, что позволяет варьировать их свойства, определяет качество и экономические показатели.

Условно различают два способа изготовления металлических порошков:

  • 1. физико-механический;
  • 2. химико-металлургический.

При физико-механическом способе изготовления порошков превращение исходного материала в порошок происходит путем механического измельчения в твердом или жидком состоянии без изменения химического состава исходного материала. К физико-механическим способам относят дробление и размол, распыление, грануляцию и обработку резанием измельчаемого материала.

При химико-металлургическом способе изменяется химический состав или агрегатное состояние исходного материала. Основными методами при химико-металлургическом производстве порошков являются: восстановление окислов, электролиз металлов, термическая диссоциация карбонильных соединений.

Измельчение твердых материалов - уменьшение начальных размеров частиц путем разрушения их под действием внешних усилий. Различают измельчение дроблением, размолом или истиранием. Наиболее целесообразно применять механическое измельчение хрупких металлов и их сплавов таких, как кремний, сурьма, хром, марганец, ферросплавы, сплавы алюминия с магнием. Размол вязких пластичных металлов (медь, алюминий и др.) затруднен. В случае таких металлов наиболее целесообразно использование в качестве сырья отходов образующихся при обработке металлов (стружка, обрезка и др.).

Для грубого размельчения используют щековые, валковые и конусные дробилки и бегуны; при этом получают частицы размером 1-10 мм, которые являются исходным материалом для тонкого измельчения, обеспечивающего производство требуемых металлических порошков. Исходным материалом для тонкого измельчения может быть и стружка. Окончательный размол полученного материала проводится в шаровых вращающихся, вибрационных или планетарных центробежных, вихревых и молотковых мельницах.

Распыление и грануляция жидких металлов является наиболее простым и дешевым способом изготовления порошков металлов с температурой плавления до 1600°С: алюминия, железа, сталей, меди, цинка, свинца, никеля и других металлов и сплавов. Сущность измельчения расплава состоит в дроблении струи расплава либо высокоэнергонасыщенным газом или жидкостью, либо механическим распылением, либо сливанием струи расплава в жидкую среду (например, воду).

Для распыления металл плавят в электропечах. В зависимости от свойств расплава и требований к качеству порошка распыление осуществляют воздухом, азотом, аргоном, гелием, а для защиты от окисления - инертным газом. Распыление воздухом - самый экономичный способ изготовления порошков. Основные параметры процесса распыления: давление и температура газового потока, температура расплава. Охлаждающей средой для распыленной струи может быть вода, газ, органическая жидкость.

Химико-металлургический метод - восстановление металлов из окислов и солей. Простейшая реакция восстановления может быть представлена так:

МеА+Х=Ме+ХА±Q;

где Ме - любой металл, А - неметаллическая составляющая (кислород, хлор, фтор, солевой остаток и др.) восстанавливаемого химического соединения металла, Х - восстановитель, Q - тепловой эффект реакции.

В качестве восстановителей используют водород, окись углерода, кокс, древесный уголь, диссоциированный аммиак, конвертированный природный газ, эндотермический и природные газы, металлы (кальций, магний, алюминий, натрий, кадмий и др.). Прочность химической связи соединения МеА и образующегося соединения восстановителя ХА позволяет оценить возможность протекания реакции восстановления. Количественной мерой («мерой химического сродства») является величина свободной энергии, высвобождающейся при образовании соответствующего химического соединения. Чем больше выделяется энергии, тем прочнее химическое соединение. В реакции восстановления всегда должна выделяться тепловая энергия.

Железные порошки получают восстановлением окисленной руды или прокатной окалины. Железо в указанных материалах находится в виде окислов: Fe 2 O 3 , Fe 3 O 4 , FeO. Медные, никелевые и кобальтовые порошки легко получают восстановлением окислов этих металлов, так как они обладают низким сродством к кислороду. Сырьем для производства порошков этих металлов служат либо окись меди Cu 2 O, CuO, закись никеля NiO, окись-закись кобальта Co 2 O 3 , Co 3 O 4 , либо окалина от проката проволоки, листов. Восстановление проводят в муфельных или в трубчатых печах водородом, аммиаком или конвертированным природным газом. Температура восстановления сравнительно низка: меди - 400...500°С, никеля - 700...750°С, кобальта - 520…570°С. Длительность процесса восстановления 1...3 ч при толщине слоя окисла 20…25 мм. После восстановления получают губку, которая легко растирается в порошок. Порошок вольфрама получают из вольфрамового ангидрида, являющегося продуктом разложения вольфрамовой кислоты Н 2 WO 4 (прокаливание при 700...800°С). Восстановление проводят либо водородом при температуре 850…900°С, либо углеродом при температуре 1350…1550°С в электропечах. Этим методом (восстановления) получают порошки молибдена титана, циркония, тантала, ниобия, легированных сталей и сплавов.

Способ электролиза наиболее экономичен при производстве химически чистых порошков меди. Физическая сущность электролиза состоит в том, что при прохождении электрического тока водный раствор или расплав соли металла, выполняя роль электролита, разлагается, металл осаждается на катоде, где его ионы разряжаются. Сам процесс электрохимического превращения происходит на границе электрод (анод или катод) - раствор. Источником ионов выделяемого металла служат, как правило, анод, состоящий из этого металла, и электролит, содержащий его растворимое соединение. Такие металлы как никель, кобальт, цинк выделяются из любых растворимых в виде однородных плотных зернистых осадков. Серебро и кадмий осаждаются из простых растворов в форме разветвленных кристаллитов, а из растворов цианистых солей - в виде плотных осадков. Размеры частиц осаждаемого порошка зависят от плотности тока, наличия коллоидов и поверхностно активных веществ. Очень большое влияние на характер осадков оказывает чистота электролита, материал электрода и характер его обработки.

Карбонилы - это соединения металлов с окисью углерода Me(CO)C, обладающие невысокой температурой образования и разложения. Процесс получения порошков в карбонильном процессе состоит из двух главных этапов:

– получение карбонила из исходного соединения

MeаXb+cCO=bX+Mea(CO)c,

– образование металлического порошка

Меа(СО)с= аМе+сСО.

Основным требованием к таким соединениям является их легколетучесть и небольшие температуры образования и термического разложения (кипения или возгонки). На первой операции - синтеза карбонила - отделение карбонила от ненужного вещества Х достигается благодаря летучести карбонила. На втором этапе происходит диссоциация (разложение) карбонила путем его нагрева. При этом возникающий газ СО может быть использован для образования новых порций карбонилов. Для синтеза карбонилов используют металлсодержащее сырье: стружку, обрезки, металлическую губку и т.п. Карбонильные порошки содержат примеси углерода, азота, кислорода (1...3%). Очистку порошка производят путем нагрева в сухом водороде или в вакууме до температуры 400...600°С. Этим методом получают порошки железа, никеля, кобальта, хрома, молибдена, вольфрама.

Металлические порошки характеризуются химическими, физическими и технологическими свойствами. Химические свойства металлического порошка зависят от химического состава, который зависит от метода получения порошка и химического состава исходных материалов. Содержание основного металла в порошках составляет 98...99%. Допустимое количестве примесей в порошке определяется допустимым их количеством в готовой продукции. Исключение сделано для окислов железа, меди, никеля, вольфрама и некоторых других, которые при нагреве в присутствии восстановления легко образуют активные атомы металла, улучшающие спекаемость порошков. В металлических порошках содержится значительное количество газов (кислород, водород, азот и др.), как адсорбированных на поверхности, так и попавших внутрь частиц в процессе изготовления или при последующей обработке. Газовые пленки на поверхности частиц порошка образуются самопроизвольно из-за ненасыщенности силовых полей в поверхностных слоях. С уменьшением частиц порошка увеличивается адсорбция газов этими частицами.

При восстановлении химических соединений часть газов - восстановителей и газообразных продуктов реакции не успевает выйти наружу и находится либо в растворенном состоянии, либо в виде пузырей. Электролитические порошки содержат водород, выделяющийся на катоде одновременно с осаждением на нем металла. В карбонильных порошках присутствуют растворенные кислород, окись и двуокись углерода, а в распыленных порошках - газы, механически захваченные внутрь частиц.

Большое количество газов увеличивает хрупкость порошков и затрудняет прессование. Интенсивное выделение газов из спрессованной заготовки при спекании может привести к растрескиванию изделий. Поэтому перед прессованием или в его процессе применяют вакуумирование порошка, обеспечивающее удаление значительного количества газов.

При работе с порошками учитывают их токсичность и пирофорность. Практически все порошки оказывают вредное воздействие на организм человека, однако и в компактном виде (в виде мелких частичек порошка) большинство металлов безвредно. Пирофорность, т.е. способность к самовозгоранию при соприкосновении с воздухом, может привести к воспламенению порошка и даже взрыву. Поэтому при работе с порошками строго соблюдают специальные меры безопасности. Физические свойства частиц характеризуют форма, размеры и гранулометрический состав, удельная поверхность, плотность и микротвердость.

В зависимости от метода изготовления порошка получают соответствующую форму частиц: сферическая - при карбонильном способе в распылении, губчатая - при восстановлении, осколочная - при измельчении в шаровых мельницах, тарельчатая - при вихревом измельчении, дендритная - при электролизе, каплевидная - при распылении. Эта форма частиц может несколько изменяться при последующей обработке порошка (размол, отжиг, грануляция). Форма частиц значительно влияет на плотность, прочность и однородность свойств прессованного изделия. Действительная плотность порошковой частицы, носящая название пикнометрической, в значительной мере зависит от наличия примесей закрытых пор, дефектов кристаллической решетки и других причин и отличается от теоретической. Наибольшее отклонение плотности порошковых частиц от теоретической плотности наблюдают у восстановленных порошков из-за наличия остаточных окислов, микропор, полостей. Микротвердость порошковой частицы характеризует ее способность к деформированию. Способность к деформированию в значительной степени зависит от содержания примесей в порошковой частице и дефектов кристаллической решетки.

Технологические свойства порошка: насыпная плотность, текучесть, прессуемость и формуемость. Насыпная плотность - это масса единицы объема порошка при свободном заполнении объема. Текучесть порошка характеризует скорость заполнения единицы объема и определяется массой порошка высыпавшегося через отверстие заданного диаметра в единицу времени. От текучести порошка зависит скорость заполнения инструмента и производительность при прессовании. Под прессуемостью порошка понимают свойство порошка приобретать при прессовании определенную плотность в зависимости от давления, а под формуемостью - свойство порошка сохранять заданную форму, полученную после уплотнения при минимальном давлении. Количественно прессуемость определяется плотностью спрессованного брикета, формуемость оценивают качественно, по внешнему виду спрессованного брикета, или количественно - величиной давления, при котором получают неосыпающийся прочный брикет.

Целью формования порошка является придание заготовкам из порошка формы, размеров, плотности и механической прочности, необходимых для последующего изготовления изделий. Формование включает следующие операции: отжиг, классификацию, приготовление смеси, дозирование и формование.

Отжиг порошков применяют с целью повышения их пластичности и прессуемости за счет восстановления остаточных окислов и снятия наклепа. Нагрев осуществляют в защитной среде (восстановительной, инертной или вакууме) при температуре 0,4...0,6 абсолютной температуры плавления металла порошка. Наиболее часто отжигают порошки, полученные механическим измельчением, электролизом и разложением карбонилов.

Классификация порошков - это процесс разделения порошков по величине частиц. Порошки с различной величиной частиц используют для составления смеси, содержащей требуемый процент каждого размера. Классификация частиц размером более 40 мкм производят в проволочных ситах. Если свободный просев затруднен, то применяют протирочные сита. Более мелкие порошки классифицируют на воздушных сепараторах.

В производстве для изготовления изделий используют смеси порошков разных металлов. Смешивание порошков есть одна из важных операций и задачей ее является обеспечение однородности смеси, так как от этого зависят конечные свойства изделий. Наиболее часто применяют механическое смешивание компонентов в шаровых мельницах и смесителях. Соотношение шихты и шаров по массе 1:1. Смешивание сопровождается измельчением компонентов. Смешивание без измельчения проводят в барабанных, шнековых, лопастных, центробежных, планетарных, конусных смесителях и установках непрерывного действия.

При приготовлении шихты некоторых металлических порошков высокой прочности (вольфрама, карбидов металлов) для повышения формуемости в смесь добавляют пластификаторы - вещества смачивающие поверхность частиц. Они должны удовлетворять требованиям: обладать высокой смачивающей возможностью, выгорать при нагреве без остатка, легко растворяться в органических растворителях.

Дозирование - это процесс отделения определенных объемов смеси порошка. Различают объемное дозирование и дозирование по массе. Объемное дозирование используют при автоматизированном формовании изделий. Дозирование по массе наиболее точный способ, этот способ обеспечивает одинаковую плотность формования заготовок.

Для формования изделий из порошков применяют следующие способы: прессование в стальной прессформе, изостатическое прессование, прокатку порошков, мундштучное прессование, шликерное формование, динамическое прессование.

При прессовании, происходящем в закрытом объеме (стальной прессформе), возникает сцепление частиц, и получают заготовку требуемых формы и размеров. Такое изменение объема происходит в результате смещения и деформации отдельных частиц и связано с заполнением пустот между частицами порошка и заклинивания - механического сцепления частиц. У пластичных материалов деформация возникает вначале у приграничных контактных участков малой площади под действием огромных напряжений, а затем распространяется вглубь частиц.

Изостатическое прессование - это прессование в эластичной оболочке под действием всестороннего сжатия. Если сжимающее усилие создается жидкостью, прессование называют гидростатическим. Из-за практического отсутствия трения между оболочкой и порошком спрессованное изделие получают с равномерной плотностью по всем сечениям, а давление прессования в этом случае меньше, чем при прессовании в стальных прессформах. Недостатком является невозможность получения прессованных деталей с заданными размерами и необходимость механической обработки при изготовлении изделий точной формы и размеров.

Мундштучное прессование - это формование заготовок из смеси порошка с пластификатором путем продавливания ее через отверстие в матрице. В качестве пластификатора применяют парафин, крахмал, поливиниловый спирт, бакелит. Этим методом получают трубы, прутки, уголки и другие изделия большой длины. Обычно мундштучное прессование выполняют при подогреве материала изделия и в этом случае пластификатор не используют; порошки алюминия и его сплавов прессуют при 400...600°C, меди - 800...900°С, никеля - 1000...1200°С, стали - 1050...1250°С. Для предупреждения окисления при горячей обработке применяют защитные среды (инертные газы, вакуум) или прессование в защитных оболочках.

Шликерное формование - представляет собой процесс заливки шликера в пористую форму с последующей сушкой. Шликер - это однородная концентрированная взвесь порошка металла в жидкости. Формирование изделия после заливки формы взвесью порошка заключается в направленном осаждении твердых частиц на стенках формы под действием направленных к ним потоков взвеси (порошка в жидкости). После удаления изделия из формы его сушат при 110...150°С в сушильных шкафах. Этим способом изготовляют трубы, сосуды и изделия данной формы.

Динамическое прессование - это процесс прессования с использованием импульсных нагрузок. Процесс имеет ряд преимуществ: уменьшаются расходы на инструмент, уменьшается упругая деформация, увеличивается плотность изделий. Отличительной чертой процесса является скорость приложения нагрузки. Источником энергии являются: взрыв заряда взрывчатого вещества, энергия электрического разряда в жидкости, импульсное магнитное поле, сжатый газ, вибрация. В зависимости от источника энергии прессование называют взрывным, электрогидравлическим, электромагнитным, пневмомеханическим и вибрационным.

Спеканием называют процесс развития межчастичного сцепления и формирования свойств изделия, полученных при нагреве сформованного порошка. Плотность, прочность и другие физико-механические свойства спеченных изделий зависят от условий изготовления. В зависимости от состава шихты различают твердофазное спекание (т.е. спекание без образования жидкой фазы) и жидкофазное, при котором легкоплавкие компоненты смеси порошков расплавляются.

При твердофазном спекании протекают следующие основные процессы: поверхностная и объемная диффузия атомов, усадка, рекристаллизация, перенос атомов через газовую среду. Все металлы имеют кристаллическое строение. С повышением температуры энергия и амплитуда колебательных движений атомов увеличивается и возможен переход атома в новое положение, где его энергия и амплитуда снова увеличиваются и возможен новый переход в другое положение. Такое перемещение атомов носит название диффузии и может совершаться как по поверхности (поверхностная диффузия), так и в объеме тела (объемная диффузия). Сокращение суммарного объема пор возможно только при объемной диффузии. При этом происходит изменение геометрических размеров изделия - усадка. Усадка при спекании может проявляться в изменении размеров и объема, и поэтому различают линейную и объемную усадку. Рекристаллизация при спекании приводит к росту зерен и уменьшению суммарной поверхности частиц, что энергетически выгодно. Однако рост зерен ограничен тормозящим влиянием посторонних включений на поверхностях зерен: порами, пленками, примесями. Различают рекристаллизацию внутризеренную и межчастичную. Перенос атомов через газовую среду наблюдают при испарении вещества и конденсации его на поверхности других частиц, что происходит при определенной температуре. Перенос вещества увеличивает межчастичные связи и прочность сцепления частиц, способствует изменению формы пор, но не изменяет плотности при спекании.

При жидкофазном спекании в случае смачивания жидкой фазой твердой фазы увеличивается сцепление твердых частичек, а при плохой смачиваемости жидкая фаза тормозит процесс спекания, препятствуя уплотнению. Смачивающая жидкая фаза приводит к увеличению скорости диффузии компонентов и облегчает перемещение частиц твердой фазы. При жидкофазном спекании можно получить практически беспористые изделия. Различают спекание с жидкой фазой, присутствующей до конца процесса спекания, и спекание с жидкой фазой, исчезающей вскоре после ее появления, когда конечный период спекания происходит в твердой фазе.

Благодаря структурным особенностям продукты порошковой металлургии более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжения, а также ядерного облучения, что очень важно для материалов новой техники.

Порошковая металлургия имеет и недостатки, тормозящие ее развитие: сравнительно высокая стоимость металлических порошков; необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий порошковой металлургии; трудность изготовления в некоторых случаях изделий и заготовок больших размеров; сложность получения металлов и сплавов в компактном состоянии; необходимость применения чистых исходных порошков для получения чистых металлов.

Недостатки порошковой металлургии и некоторые ее достоинства нельзя рассматривать как постоянно действующие факторы: в значительной степени они зависят от состояния и развития как самой порошковой металлургии, так и других отраслей промышленности. По мере развития техники порошковая металлургия может вытесняться из одних областей и, наоборот, завоевывать другие. Развитие дугового, электроннолучевого, плазменного плавления и электроимпульсного нагрева позволили получать не достижимые прежде температуры, вследствие чего удельный вес порошковой металлургии в производстве несколько снизился. Вместе с тем прогресс техники высоких температур ликвидировал такие недостатки порошковой металлургии, как, например, трудность приготовления порошков чистых металлов и сплавов: метод распыления дает возможность с достаточной полнотой и эффективностью удалить в шлак примеси и загрязнения, содержащиеся в металле до расплавления. Благодаря созданию методов всестороннего обжатия порошков при высоких температурах в основном преодолены и трудности изготовления беспористых заготовок крупных размеров.

В то же время ряд основных достоинств порошковой металлургии - постоянно действующий фактор, который, вероятно, сохранит свое значение и при дальнейшем развитии техники. С увеличением масштабов выпуска и совершенствованием методов изготовления порошков решатся такие проблемы порошковой металлургии как: дороговизна исходных материалов. При массовом производстве расходы, связанные с необходимостью изготовления индивидуальных приспособлений для каждого вида деталей сократятся до минимума. С исследованием и использованием на производстве получения чистых порошков распылением расплавленного железа решены такие проблемы как необходимость получения достаточно чистых исходных материалов.

Список использованной литературы

  • 1. Бальшин М.Ю., Кипарисов С.С. - М.: Металлургия, 1978.
  • 2. Бальшин М.Ю. Научные основы порошковой металлургии и металлургии волокна. - М.: Металлургия, 1982.
  • 3. Еськов Б.Б., Лагунов Д.В., Лагунов В.С. Пористые материалы. - Воронеж, 1995.
  • 4. Либенсон Г.А. Основы порошковой металлургии. - М.: Металлургия, 1985.
  • 5. Раковский B.C., Саклинский В.В. Порошковая металлургия в машиностроении. - М.: Машиностроение, 1983.

Порошковая металлургия I Порошко́вая металлурги́я

область техники, охватывающая совокупность методов изготовления порошков металлов и металлоподобных соединений, полуфабрикатов и изделий из них (или их смесей с неметаллическими порошками) без расплавления основного компонента. Технология П. м. включает следующие операции: получение исходных металлических порошков и приготовление из них шихты (смеси) с заданными химическим составом и технологическими характеристиками; формование порошков или их смесей в заготовки с заданными формой и размерами (главным образом Прессование м); спекание, т. е. термическую обработку заготовок при температуре ниже точки плавления всего металла или основной его части. После спекания изделия обычно имеют некоторую пористость (от нескольких процентов до 30-40%, а в отдельных случаях до 60%). С целью уменьшения пористости (или даже полного устранения её), повышения механических свойств и доводки до точных размеров применяется дополнительная обработка давлением (холодная или горячая) спечённых изделий; иногда применяют также дополнительную термическую, термохимическую или термомеханическую обработку. В некоторых вариантах технологии отпадает операция формования: спекают порошки, засыпанные в соответствующие формы. В ряде случаев прессование и спекание объединяют в одну операцию т. н. горячего прессования - обжатия порошков при нагреве.

Получение порошков. Механическое измельчение металлов производят в вихревых, вибрационных и шаровых мельницах. Другой, более совершенный метод получения порошков - распыление жидких металлов: его достоинства - возможность эффективной очистки расплава от многих примесей, высокая производительность и экономичность процесса. Распространено получение порошков железа, меди, вольфрама, молибдена высокотемпературным восстановлением металла (обычно из окислов) углеродом или водородом. Находят применение гидрометаллургические методы восстановления растворов соединений этих металлов водородом. Для получения медных порошков наиболее часто используют электролиз водных растворов. Имеются и другие, менее распространённые методы приготовления порошков различных металлов, например электролиз расплавов и термическая диссоциация летучих соединений (карбонильный метод).

Формование порошков. Основной метод формования металлических порошков - прессование в пресс-формах из закалённой стали под давлением 200-1000 Мн/м 2 (20-100 кгс/мм 2 ) на быстроходных автоматических прессах (до 20 прессовок в 1 мин ). Прессовки имеют форму, размеры и плотность, заданные с учётом изменения этих характеристик при спекании и последующих операциях. Возрастает значение таких новых методов холодного формования, как изостатическое прессование порошков под всесторонним давлением, прокатка и Экструзия порошков.

Спекание проводят в защитной среде (водород; атмосфера, содержащая соединения углерода; вакуум; защитные засыпки) при температуре около 70-85% от абсолютной точки плавления, а для многокомпонентных сплавов - несколько выше температуры плавления наиболее легкоплавкого компонента. Защитная среда должна обеспечивать восстановление окислов, не допускать образования нежелательных загрязнений продукции (копоти, карбидов, нитридов и т.д.), предотвращать выгорание отдельных компонентов (например, углерода в твёрдых сплавах), обеспечивать безопасность процесса спекания. Конструкция печей для спекания должна предусматривать проведение не только нагрева, но и охлаждения продукции в защитной среде. Цель спекания - получение готовых изделий с заданными плотностью, размерами и свойствами или полупродуктов с характеристиками, необходимыми для последующей обработки. Расширяется применение горячего прессования (спекания под давлением), в частности изостатического.

П. м. имеет следующие достоинства, обусловившие её развитие. 1) Возможность получения таких материалов, которые трудно или невозможно получать др. методами. К ним относятся: некоторые тугоплавкие металлы (вольфрам, тантал); сплавы и композиции на основе тугоплавких соединений (твёрдые сплавы на основе карбидов вольфрама, титана и др.): композиции и т. н. псевдосплавы металлов, не смешивающихся в расплавленном виде, в особенности при значительной разнице в температурах плавления (например, вольфрам - медь); композиции из металлов и неметаллов (медь - графит, железо - пластмасса, алюминий - окись алюминия и т.д.); пористые материалы (для подшипников, фильтров, уплотнений, теплообменников) и др. 2) Возможность получения некоторых материалов и изделий с более высокими технико-экономическими показателями. П. м. позволяет экономить металл и значительно снижать себестоимость продукции (например, при изготовлении деталей литьём и обработкой резанием иногда до 60-80% металла теряется в литники, идёт в стружку и т.п.). 3) При использовании чистых исходных порошков можно получить спечённые материалы с меньшим содержанием примесей и с более точным соответствием заданному составу, чем у обычных литых сплавов. 4) При одинаковом составе и плотности у спечённых материалов в связи с особенностью их структуры в ряде случаев свойства выше, чем у плавленых, в частности меньше сказывается неблагоприятное влияние предпочтительной ориентировки (текстуры), которая встречается у ряда литых металлов (например, бериллия) вследствие специфических условий затвердевания расплава. Большой недостаток некоторых литых сплавов (например, быстрорежущих сталей и некоторых жаропрочных сталей) - резкая неоднородность локального состава, вызванная ликвацией (См. Ликвация) при затвердевании. Размеры и форму структурных элементов спечённых материалов легче регулировать, и главное, можно получать такие типы взаимного расположения и формы зёрен, которые недостижимы для плавленого металла. Благодаря этим структурным особенностям спечённые металлы более термостойки, лучше переносят воздействие циклических колебаний температуры и напряжений, а также ядерного облучения, что очень важно для материалов новой техники.

П. м. имеет и недостатки, тормозящие её развитие: сравнительно высокая стоимость металлических порошков; необходимость спекания в защитной атмосфере, что также увеличивает себестоимость изделий П. м.; трудность изготовления в некоторых случаях изделий и заготовок больших размеров; сложность получения металлов и сплавов в компактном беспористом состоянии; необходимость применения чистых исходных порошков для получения чистых металлов.

Недостатки П. м. и некоторые её достоинства нельзя рассматривать как постоянно действующие факторы: в значительной степени они зависят от состояния и развития как самой П. м., так и др. отраслей промышленности. По мере развития техники П. м. может вытесняться из одних областей и, наоборот, завоёвывать другие. Впервые методы П. м. разработали в 1826 П. Г. Соболевский и В. В. Любарский для изготовления платиновых монет. Необходимость использования для этой цели П. м. была обусловлена невозможностью достижения в то время температуры плавления платины (1769 °С). В середине 19 в. в связи с развитием техники получения высоких температур промышленное использование методов П. м. прекратилось. П. м. возродилась на рубеже 20 в. как способ производства из тугоплавких металлов нитей накала для электрических ламп. Однако развивавшиеся в дальнейшем методы дугового, электроннолучевого, плазменного плавления и электроимпульсного нагрева позволили получать не достижимые ранее температуры, вследствие чего удельный вес П. м. в производстве этих металлов несколько снизился. Вместе с тем прогресс техники высоких температур ликвидировал такие недостатки П. м., ограничивавшие её развитие, как, например, трудность приготовления порошков чистых металлов и сплавов: метод распыления даёт возможность с достаточной полнотой и эффективностью удалить в шлак примеси и загрязнения, содержавшиеся в металле до расплавления. Благодаря созданию методов всестороннего обжатия порошков при высоких температурах в основном преодолены и трудности изготовления беспористых заготовок крупных размеров.

В то же время ряд основных достоинств П. м. - постоянно действующий фактор, который, вероятно, сохранит своё значение и при дальнейшем развитии техники.

Лит.: Федорченко И. М., Андриевский Р. А., Основы порошковой металлургии, К., 1961; Бальшин М. Ю.. Научные основы порошковой металлургии и металлургии волокна, М., 1972; Кипарисов С. С., Либенсон Г. А., Порошковая металлургия, М., 1972.

М. Ю. Бальшин.

II Порошко́вая металлу́рги́я («Порошко́вая металлу́рги́я»)

ежемесячный научно-технический журнал, орган института проблем материаловедения АН УССР. Выходит с 1961 в Киеве. Публикует статьи по теории, технологии и истории порошковой металлургии, о тугоплавких соединениях и высокотемпературных материалах. Тираж (1974) 2,3 тыс. экз. Переиздаётся на английском языке в Нью-Йорке.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Порошковая металлургия" в других словарях:

    Порошковая металлургия технология получения металлических порошков и изготовления изделий из них (или их композиций с неметаллическими порошками). В общем виде технологический процесс порошковой металлургии состоит из четырёх основных… … Википедия

    ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, производство порошков металлов и изделий из них. Порошки прессуются в желаемые формы и затем нагреваются несколько ниже ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ. Использование порошков является более экономичным, чем использование… … Научно-технический энциклопедический словарь

    порошковая металлургия - Ндп. металлокерамика Область науки и техники, охватывающая производство металлических порошков а также изделий из них или их смесей с неметаллическими порошками. [ГОСТ 17359 82] Недопустимые, нерекомендуемые металлокерамика Тематики порошковая… … Справочник технического переводчика

    Современная энциклопедия

    Производство порошков металлов и изделий из них, их смесей и композиций с неметаллами. Порошки вырабатываются механическим измельчением или распылением жидких исходных металлов, высокотемпературным восстановлением и термической диссоциацией… … Большой Энциклопедический словарь

    Порошковая металлургия - ПОРОШКОВАЯ МЕТАЛЛУРГИЯ, производство металлических порошков и изделий из них, их смесей и композиций с неметаллами, а также изделий с различной степенью пористости. Изделия получают прессованием с последующей или одновременной термической,… … Иллюстрированный энциклопедический словарь

    порошковая металлургия - раздел науки и отрасль металлургической и машиностроительной промышленности, включающий технологические процессы получения порошков металлов, сплавов и химических соединений, производства из них полуфабрикатов и готовых… … Энциклопедический словарь по металлургии

    Порошковая металлургия - 1. Порошковая металлургия Ндп. Металлокерамика D. Pulvermetallurgie Е. Powder metallurgy F. Métallurgie des poudres Источник: ГОСТ 17359 82: Порошковая металлургия. Термины и определения оригинал документа Смотри также родствен … Словарь-справочник терминов нормативно-технической документации

    Область науки и техники, охватывающая совокупность методов изготовления порошков металлов, сплавов и металлоподобных соед., полуфабрикатов и изделий из них или их смесей с неметаллич. порошками без расплавления осн. компонента. Практика… … Химическая энциклопедия

    Технология получения металлических порошков и изготовления изделий из них, а также из композиций металлов с неметаллами. В обычной металлургии металлические изделия получают, обрабатывая металлы такими методами, как литье, ковка, штампование и… … Энциклопедия Кольера

    Отрасль науки и техники, занимающаяся получением порошков металлов, сплавов и бескислородных соединений, а также материалов и изделий на их основе. Получение кислородных соединений типа оксидов – это область керамического производства, хотя… … Энциклопедия техники

Книги

  • Порошковая металлургия. Инженерия поверхности, новые порошковые композиционные материалы. Сварка. Часть 1 , Сборник статей , В настоящий сборник включены доклады Международного симпозиума «Порошковая металлургия: инженерия поверхности, новые порошковые композиционные материалы. Сварка» (10–12 апреля 2013 г.),… Категория: Техническая литература Серия: Сборник докладов 8-ого Международного симпозиума (Минск, 10-12 апреля 2013 г.) Издатель:

Порошковая металлургия – область техники, охватывающая процессы получения порошков металлов и металлоподобных соединений и процессы изготовления изделий из них без расплавления.

Характерной особенностью порошковой металлургии является применение исходного материала в виде порошков, из которых прессованием формуются изделия заданной формы и размеров.
Полученные заготовки подвергаются спеканию при температуре ниже температуры плавления основного компонента.


Основными достоинствами технологии производства изделий методом порошковой металлургии являются

· возможность изготовления деталей из тугоплавких металлов и соединений, когда другие методы использовать невозможно;

· значительная экономия металла за счет получения изделий высокой точности, в минимальной степени нуждающихся в последующей механической обработке (отходы составляют не более 1…3 %);

· возможность получения материалов максимальной чистоты;

· простота технологии порошковой металлургии.

Методом порошковой металлургии изготавливают твердые сплавы, пористые материалы: антифрикционные и фрикционные, фильтры; электропроводники, конструкционные детали, в том числе работающие при высоких температурах и в агрессивных средах.

Пористые порошковые материалы.

Отличительной особенностью является наличие равномерной объемной пористости, которая позволяет получать требуемые эксплуатационные свойства.

Антифрикционные материалы (пористость 15…30 %), широко применяющиеся для изготовления подшипников скольжения, представляют собой пористую основу, пропитанную маслом.
Масло поступает из пор на поверхность, и подшипник становится самосмазывающимся, не требуется подводить смазку извне.
Это существенно для чистых производств (пищевая, фармацевтическая отрасли). Такие подшипники почти не изнашивают поверхность вала, шум в 3…4 раза меньше, чем от шариковых подшипников.

Подшипники работают при скоростях трения до 6 м/с при нагрузках до 600 МПа.
При меньших нагрузках скорости скольжения могут достигать 20…30 м/с. Коэффициент трения подшипников – 0,04…0,06.

Для изготовления используются бронзовые или железные порошки с добавлением графита (1…3 %).

Разработаны подшипниковые спеченные материалы на основе тугоплавких соединений боридов, карбидов и др., содержащие в качестве твердой смазки сульфиды, селениды и гексагональный нитрид бора.
Подшипники могут работать в условиях вакуума и при температурах до 500 o С.

Применяют металлопластмассовые антифрикционные материалы:
спеченные бронзографиты, титан, нержавеющие стали пропитывют фторопластом.
Получаются коррозионностойкие и износостойкие изделия.
Срок службы металлопластмассовых материалов вдвое больше, чем материалов других типов.

Фрикционные материалы (пористость 10…13 %) предназначены для работы в муфтах сцепления и тормозах. Условия работы могут быть очень тяжелыми: трущиеся поверхности мгновенно нагреваются до 1200 o С, а материал в объеме – до 500…600 o С.
Применяют спеченные многокомпонентные материалы, которые могут работать при скоростях трения до 50 м/с на нагрузках 350…400 МПа.
Коэффициент трения при работе в масле – 0,08…0,15, при сухом трении – до 0,7.

По назначению компоненты фрикционных материалов разделяют на группы:
а) основа – медь и ее сплавы – для рабочих температур 500…600 o С, железо, никель и сплавы на их основе – для работы при сухом трении и температурах 1000…1200 o С;
б) твердые смазки – предотвращают микросхватывание при торможении и предохраняют фрикционный материал от износа; используют свинец, олово, висмут, графит, сульфиты бария и железа, нитрид бора;
в) материалы, обеспечивающие высокий коэффициент трения – асбест, кварцевый песок, карбиды бора, кремния, хрома, титана, оксиды алюминия и хрома и др.

Примерный состав сплава: медь – 60…70 %, олово – 7 %, свинец – 5 %, цинк – 5…10%, железо – 5…10 %, кремнезем или карбид кремния – 2…3 %, графит – 1…2 %.

Из фрикционных материалов изготавливают тормозные накладки и диски. Так как прочность этих материалов мала, то их прикрепляют к стальной основе в процессе изготовления (припекают к основе) или после (приклепывают, приклеивают и т.д.).

Фильтры (пористость 25…50 %) из спеченных металлических порошков по своим эксплуатационным характеристикам превосходят другие фильтрующие материалы, особенно когда требуется тонкая фильтрация.
Они могут работать при температурах от –273 o С до 900 o С, быть коррозионностойкими и жаропрочными - можно очищать горячие газы.
Спекание позволяет получать фильтрующие материалы с относительно прямыми тонкими порами одинакового размера.

Изготавливают фильтры из порошков коррозионностойких материалов:
бронзы, нержавеющих сталей, никеля, серебра, латуни и др.
Для удовлетворения запросов металлургической промышленности разработаны материалы на основе никелевых сплавов, титана, вольфрама, молибдена и тугоплавких соединений.
Такие фильтры работают тысячи часов и поддаются регенерации в процессе работы. Их можно продуть, протравить, прожечь.

Фильтрующие материалы выпускают в виде чашечек, цилиндров, втулок, дисков, плит.
Размеры колеблются от дисков диаметром 1,5 мм до плит размерами 450 х 1000 мм.
Наиболее эффективно применение фильтров из нескольких слоев с различной пористостью и диаметром пор.



error: Content is protected !!