Применение полимеров в технологических машинах. Полимерные материалы, применяемые при ремонте. приготовление прядильной массы

Наблюдаемое в настоящее время в России становление машиностроительной индустрии, обеспечивающей реализацию технологических процессов производства полимерной тары и упаковки, как и всякая новация, сопровождается появлением всякого рода проблем, на которые и хотели бы обратить ваше внимание.

Появление новой области промышленной индустрии обусловило и появление специальной терминологии, которая достаточно широко, но, к сожалению, не всегда правильно употребляется, даже в среде специалистов. Такая ситуация создаёт вполне определённые трудности не только в восприятии различного рода информационных материалов о полимерной упаковке и оборудовании для её производства, но, что ещё более неприемлемо, зачастую вводит в заблуждение, формируя ложные представления по тем или иным аспектам, связанным с производством и использованием полимерной упаковки. Попробуем разобраться с основными определениями, понятиями и экономическими категориями, сопровождающими процессы производства полимерных упаковочных средств и оборудование для их реализации.

Если обратиться к ГОСТ 17527-86 "Упаковка. Термины и определения", то станет понятно, что под упаковкой понимается некий комплекс защитных мер и материальных средств (курсив наш), обеспечивающих подготовку различного рода продукции к транспортированию и её материальную сохранность. Из приведённого определения ясно, что разработчики ГОСТ стремились в одном определении совместить понятие об упаковке как о комплексе технологических процессов, обеспечивающих упаковывание продукции с помощью специального оборудования или вручную, с одной стороны, а с другой - как о материальных средствах (конкретных видах изделий), обеспечивающих защиту продукции от повреждения или потерь в процессе транспортировки, складирования и хранения. Отсюда и совершенно разный смысл, который может вкладываться в термин "упаковка". Не будем обсуждать достоинства или недостатки данного определения, но отметим тот факт, что оно совсем не затрагивает такого понятия как "тара", которая является неотъемлемым, а иногда и единственным элементом (средством) упаковки, и также представляющая собой конкретные виды изделий для размещения продукции. Во многих конкретных случаях достаточно сложно разграничить понятия "тара" и "упаковка", а поэтому в литературе часто пользуются обобщённым понятием, определяемым как тароупаковочное средство. О технологиях производства таких средств из полимерных материалов и оборудовании для их реализации и пойдёт речь ниже.

В мировой практике существует большое разнообразие технологических методов переработки полимерных материалов в тароупаковочные средства, реализуемых на соответствующих видах специального оборудования. Наиболее распространены среди них следующие: литьевое (инжекционное) формование, экструзионно- и инжекционно-раздувное формование, пневмо- и вакуумформование, механотермоформование , а также экструзионные технологии получения листовых и плёночных материалов . Рассмотрим существо этих технологических методов, учитывая, что полимерные тароупаковочные средства изготавливаются из термопластичных полимерных материалов, часто называемых термопластами.

Метод литьевого (инжекционного) формования термопластов (рис.1) заключается в том, что исходный полимерный материал в виде гранул или порошка загружается в бункер литьевой машины, где захватывается вращающимся шнеком (червяком) 3 и транспортируется им вдоль оси пластикационного обогреваемого цилиндра 2 в его сопловую часть, переходя при этом из твёрдого состояния в состояние расплава. По мере накопления необходимого объёма расплава полимера 4 последний впрыскивается за счёт поступательного перемещения шнека через специальное сопло 5 в сомкнутую охлаждаемую литьевую форму 1 . Заполнивший полость формы расплав полимера удерживается в ней какое-то время под давлением и остывает. Далее литьевая форма раскрывается, готовое изделие 6 удаляется из её полости, а цикл формования повторяется.

Метод реализуется с помощью специального оборудования, называемого литьевыми машинами (выпускавшиеся ранее в СССР литьевые машины носят название "термопластавтоматы" ), и имеет ряд преимуществ по сравнению с другими методами формования изделий из полимеров: высокая производительность, высокий уровень механизации и автоматизации реализуемого процесса, отсутствие этапа получения заготовки для формования изделий, небольшое количество отходов, возможность формования изделий с практически любым заданным распределением толщины стенок. К недостаткам следует отнести невозможность формования полых изделий закрытого типа (бутылок, канистр, и т. п.) и крупногабаритных изделий. Вместе с тем, как ни один другой, этот метод имеет хорошо развитую теоретическую базу, научно обоснованные и широко применяемые в практике методы расчёта и конструирования формующего инструмента для его реализации, обеспечивающие производство изделий с задаваемыми параметрами.

Реализация метода экструзионно-раздувного формования полимерной тары и упаковки (рис.2) заключается в следующем: исходный полимерный материал в виде гранул или порошка пластицируется вращающимся шнеком экструдера (червячного пресса) в его обогреваемом цилиндре и продавливается (экструдируется) через формующий инструмент - кольцевую экструзионную головку 1 , выходя из него в виде трубчатой (рукавной) заготовки 2 и попадая в пространство между разомкнутыми половинами охлаждаемой раздувной формы 4 , смонтированными на подвижных плитах приёмного устройства. По достижению заготовкой определённой длины полуформы смыкаются с захватом заготовки и её раздуванием сжатым газом, подаваемым в полость заготовки через раздувной ниппель 3 . После охлаждения раздувные формы размыкаются, и готовое полое изделие 5 снимается с раздувного ниппеля. Далее цикл формования повторяется.

Данный метод обладает рядом преимуществ: простота технологии и возможность полной автоматизации процесса формования, высокая производительность в сочетании с возможностью совмещения производства тары в одном потоке с производством затариваемой продукции, её расфасовкой, укупоркой, этикетированием тары и т. п., относительно невысокая стоимость технологического оборудования и формующего инструмента (раздувных форм, экструзионных головок). К основным недостаткам метода следует отнести следующее: его реализация протекает в два этапа (получение трубчатой заготовки и её последующее раздувное формование в изделие), что требует наличия двух типов формующего инструмента (экструзионной головки для получения заготовки и раздувной формы); получаемые изделия обладают значительной разнотолщинностью (неоднородностью толщины стенок); наличие технологических отходов. Однако достоинства и технико-экономические показатели метода устойчиво обеспечивают не только "выживаемость", но и его развитие в условиях рынка. Так, например, в последнее время появились сведения о новых разновидностях метода экструзионно-раздувного формования и формующих элементах оборудования для их реализации. Отдельными исследованиями показано, что, например, принудительное растяжение заготовки в процессе её раздувания в сочетании с интенсивным охлаждением изделий приводит к изменениям в структуре полимеров, влияющим на их эксплуатационные характеристики (прочность, газопроницаемость, теплопроводность и т.п.). Однако пока эти разновидности не получили широкого распространения в производстве упаковки.

Разнотолщинность полимерной тары и упаковки, получаемых методом экструзионно-раздувного формования, обусловлена несколькими причинами. Одна из них заключается в гравитационной вытяжке заготовок в процессе их экструзии через формующий инструмент. Для борьбы с этим явлением разработано несколько способов. Например, для снижения гравитационной вытяжки заготовок оптимизируют скорость экструзии заготовок. Широко также применяется "программирование" заготовки, когда её гравитационная вытяжка компенсируется за счёт целенаправленного изменения толщины стенки последней в процессе экструзии. Для этого используются экструзионные головки специальных конструкций, позволяющие в процессе экструзии по определённой программе управлять шириной формующего кольцевого зазора головки. Успех "программирования" заготовки зависит от корректности решения задачи о её гравитационной вытяжке, представляющего собой функцию управления формующим зазором экструзионной головки. В соответствии с этой функцией программируются командно-задающие устройства, управляющие работой экструзионно-раздувных агрегатов.

Управление формующим зазором инструмента (кольцевой экструзионной головки) используется и для получения "программированных" трубчатых заготовок, обеспечивающих производство изделий с заданным распределением толщины их стенок. Задача определения функции управления формующим зазором головки в этом случае гораздо сложнее, чем в предыдущем. На практике функцию управления подбирают опытным путём при формовании каждого конкретного изделия.
С этой целью сначала экструдируют заготовку с постоянной толщиной стенки, нанося на её поверхность маркировку, а затем раздувают её в изделие. Полученное изделие разрезают и анализируют распределение толщины стенок, сравнивая с заданным. Затем вся процедура повторяется, но с той разницей, что при экструзии заготовки за счёт изменения зазора формующего канала головки увеличивают или уменьшают толщину стенки заготовки в необходимых (согласно маркировке) местах в соответствии с результатами предыдущего эксперимента. Полученное изделие вновь подвергают анализу, и так продолжают до тех пор, пока распределение толщины стенок в получаемом изделии не будет соответствовать заданному. Такая процедура, повторяемая иногда до десятка и более раз, требует определённых трудозатрат, расхода сырья, тепло- и энергоносителей. Более того, зачастую оказывается, что спроектированная конструкция изделия вообще не позволяет отформовать его с заданным распределением толщины стенок.
Ещё одна важная практическая проблема, которую приходится решать при реализации рассматриваемого метода состоит в необходимости учёта явления высокоэластического восстановления, наблюдаемого при экструзии заготовок и заключающегося в изменении геометрических размеров ("разбухании") экструдата по отношению к геометрическим размерам формующего канала инструмента. Не вдаваясь в анализ теоретических представлений о существе этого процесса и способах его описания, подчеркнём лишь актуальность учёта этого явления с точки зрения расчёта и конструирования геометрических параметров профилирующих элементов (дорнов и мундштуков) экструзионных головок, обеспечивающих получение заготовок с заданными геометрическими параметрами.

Метод инжекционно-раздувного формования заключается в том, что на первой стадии процесса методом литьевого формования (см. выше) получают трубчатую заготовку, называемую преформой, которую затем раздувают в полое изделие. Данный метод может осуществляться по двум технологическим схемам. Первая из них предусматривает раздувное формование полученных заготовок сразу, после стадии литьевого формования. Для этого литьевые машины, обеспечивающие формование заготовок, оснащаются дополнительным узлом, в котором осуществляется раздувание заготовок в изделия. В этом случае отливаемые трубчатые заготовки, остающиеся на полых сердечниках, после раскрытия литьевой формы переносятся в узел раздувного формования, оснащённый раздувными формами, в котором и происходит раздувание заготовок в изделия. В соответствии со второй схемой (рис.3) стадии получения заготовок и их раздувного формования в изделия осуществляются отдельно друг от друга. В этом случае для получения преформ применяются обычные литьевые машины, оснащённые формующим инструментом, но стадия раздувного формования преформ в изделия осуществляется на специальных раздувных линиях, содержащих бункер-накопитель, устройство для ориентации и перемещения заготовок, устройство для разогрева заготовок 1 , узел раздувного формования разогретых заготовок 2 в изделия 5 , оснащённый раздувными полуформами 4

И раздувным ниппелем 3 . К преимуществам данного метода следует отнести высокую степень механизации и автоматизации, а также высокую производительность оборудования: линии для раздувного формования полых изделий из инжекционных заготовок, выпускаемые фирмами "Сидель" (Франция), "Крупп-Каутекс" (Германия), позволяют производить от нескольких сотен до нескольких десятков тысяч изделий в час. Недостатки этого метода формования заключаются в высокой стоимости основного технологического оборудования и формующего инструмента, используемого для его реализации; во-вторых, промышленном использовании практически пока только одного полимерного материала - полиэтилентерефталата. Кроме того, производимые изделия также обладают разнотолщинностью.

Метод пневмо - и вакуумформования полимерных изделий (рис.4) заключается в том, что закреплённая по контуру в зажимном устройстве 4 и установленная над формой (формующей матрицей) 3 плоская (листовая или плёночная) заготовка 1 разогревается нагревательным устройством 2 до определённой температуры, а затем под действием перепада давления, создаваемого между поверхностями заготовки, происходит её формование в изделие 5 . Известно много разновидностей данного метода, в которых перепад давлений обеспечивается различными способами. Наибольшее распространение получили два из них: создание избыточного пневматического давления над заготовкой и вакуумирование объёма полости под ней.

Данный метод реализуется на различных типах вакуумформовочных машин, установках для механопневмоформования и разного рода нестандартном оборудовании. К его основным достоинствам следует отнести возможность производства крупногабаритных изделий, простоту технологии, относительно невысокую стоимость основного оборудования и формующего инструмента. Основные недостатки связаны с невысокой производительностью, наличием вспомогательных технологических операций (раскрой и вырезка заготовок для формования, механическая обработка готовых изделий), зависимостью от наличия исходных заготовок и достаточно большим количеством технологических отходов. Развитие и совершенствование метода направлено на создание автоматизированных машин и линий, обеспечивающих высокую производительность и отсутствие дополнительной механической обработки изделий в сочетании с их удовлетворительным качеством.

Метод механотермоформования (рис.5) отличается от метода пневмо- и вакуумформования только тем, что формование изделия 5 из плоской заготовки 1 осуществляется за счёт поступательного перемещения формующего пуансона 3 , вытягивающего предварительно нагретую устройством 2 заготовку, закреплённую в зажимном устройстве 4 .

Метод реализуется на вакуумформовочных машинах, специальном штамповочном оборудовании и линиях производства тары из рулонных материалов. Соответствующие современные автоматические линии (например, германской фирмы "Иллиг") характеризуются очень высокими параметрами: скорость движения рулонного материала достигает нескольких десятков метров в минуту, а штучная производительность - до десятков тысяч изделий в час. Это обеспечивает конкурентоспособность метода даже по отношению к литьевому формованию изделий из полимеров. К основным его недостаткам следует отнести зависимость от наличия листового или рулонного материала, относительно большое количество отходов и ощутимую разнотолщинность получаемых изделий.

Экономическая целесообразность той или иной технологии определяется, прежде всего, серийностью производства изделия, что наглядно демонстрируется сравнительными данными, приведёнными в таблице, где за относительные условные единицы капитальных затрат и себестоимости производства 20-литровой ёмкости из полиэтилена приняты параметры, соответствующие её формованию пневмовакуумным методом.

Кроме рассмотренных технологических методов, обеспечивающих, как правило, производство жёстких видов полимерной тары и упаковки, существуют технологии производства мягких упаковочных средств, к которым относятся полимерные плёнки и изделия из них (пакеты, мешки и т.п.). Заметим, что в популярной литературе достаточно часто понятие "полимерные плёнки" связывают с неким понятием "гибкие упаковочные материалы " . Хотелось бы обратить внимание на бессмысленность последнего понятия вообще: можно говорить лишь о свойстве различных материалов, полимерных в том числе, сопротивляться деформированию, вызываемому внешней нагрузкой. А вот сама сопротивляемость связывается в технике с совершенно чётким и давно известным понятием о жёсткости конструкции (именно конструкции, а не материала), определяемой её геометрией и свойствами материала, из которого она изготовлена. Если говорить о конструкциях, жёсткость которых мала и которые, как следствие, не могут передавать изгибающих моментов, то такие конструкции, изготовленные из металлов, называются безмоментными (безмоментные оболочки, мембраны), а из полимерных материалов - мягкими. Кстати, именно по критерию относительной жёсткости плоские полимерные изделия делятся на листы и плёнки.

Методы производства и экономические
показатели, отн. усл. ед.

Годовой выпуск изделий, тыс. шт.

Инжекционно-раздувное формование:
капитальные затраты …………….

себестоимость …………………….
Пневмовакуумное формование:
капитальные затраты …………….
себестоимость …………………….
Экструзионно-раздувное формование:
капитальные затраты …………….
себестоимость …………………….

Производство полимерных плёнок базируется на экструзионных технологиях , реализация которых имеет две разновидности. Технологию производства рукавных плёнок можно пояснить на примере работы плёночной линии (рис.6) .

Полимерное сырьё в виде гранул из загрузочного бункера 1 захватывается вращающимся шнеком червячного пресса 2 и транспортируется им внутри цилиндра
пресса, расплавляясь и гомогенизируясь. Далее получаемый расплав полимера продавливается вращающимся червяком через кольцевую экструзионную головку 10 , выходя из неё в виде трубчатой заготовки 3 , которая раздувается сжатым газом в рукавную плёнку 4 , охлаждаемую обдувочным кольцом 9 . Полученная рукавная плёнка складывается специальным устройством 5 и "отбирается" тянущим устройством 6 , с которого затем поступает на устройство 8 , обеспечивающее сматывание её в рулон 7 .

Однако не все полимерные материалы способны раздуваться в оболочечные конструкции, и описанная технология не годится для производства плёнок из таких материалов. В таких случаях применяют так называемый плоскощелевой метод, в соответствии с которым расплав полимера экструдируется через плоскощелевую экструзионную головку в виде полотна, которое "калибруется" в зазоре двух- или многовалковых гладильных каландров и окончательно охлаждается на рольганге (иногда и путём водяного орошения). Существующие технологии производства полимерных плёнок обеспечивают получение как однослойных, так и многослойных плёнок; производство последних сопряжено с большими сложностями как технологического, так конструктивного характера.

В заключение обратим внимание на один из самых важных аспектов производства полимерных тароупаковочных средств, которому, даже в специализированных отечественных периодических изданиях не уделяется должного внимания, что не поддаётся никакому разумному объяснению. Речь о том, что ни одно тароупаковочное полимерное средство не может быть изготовлено без формующего инструмента, которым должен быть оснащён тот или иной тип технологического оборудования. Производители же оборудования, как правило, формующим инструментом его не комплектуют (исключение составляют лишь плёночные линии). Эта ситуация вполне понятна и объяснима: производитель оборудования не может позволить себе заранее проектировать, а тем более изготавливать формующий инструмент "на все случаи жизни". Более того, в зависимости от сложности проектируемого к производству изделия, выбранной технологии его изготовления стоимость формующего инструмента может достигать уровня стоимости самого технологического оборудования. Например, оснащение экструзионно-раздувного агрегата угловой экструзионной головкой, обеспечивающей "программирование" толщины стенки экструдируемой заготовки, почти вдвое увеличивает его стоимость. В индустриально развитых странах эта проблема решена - там уже давно существуют специализированные фирмы, занимающиеся вопросами проектирования и изготовления формующего инструмента для переработки полимеров. У нас, в России, решение этой проблемы находится пока в зачаточном состоянии. Это приводит к тому, что проектируемый не всегда профессионально подготовленными специалистами формующий инструмент не может обеспечить производство изделий, качество которых отвечало бы мировым стандартам. Кроме того, не следует забывать, что проектируемый формующий инструмент для производства того или иного вида изделий во многом, если не вообще, определяет выбор типоразмера оборудования. Отсюда следует, что выбор оборудования и проектирование формующего инструмента - неразрывно связанные задачи, решение которых должно оптимизировать производственный процесс. В противном случае формующий инструмент либо вообще нельзя установить на оборудование, либо оно работает не на полную технологическую мощность, снижая экономические показатели производства.

Изложенное показывает, что производство тары и упаковки из полимерных материалов - весьма сложный, многоуровневый процесс, успешная реализация которого требует глубокой профессиональной подготовки не только в области экономики и технологий переработки полимеров, но прежде всего в области конструирования оборудования и формующего инструмента.

Особенности технологических процессов изготовления поли­мерных материалов зависят от их состава и назначения. Главными технологическими факторами являются определенные температур­ные и силовые, формирующие изделия, для чего применяется раз­личное оборудование. В основном производство складывается из подготовки, дозировки и приготовления полимерных композиций, которые затем перерабатываются в изделия, и обеспечивается стаби­лизация их физико-механических свойств, размеров и формы.

Основные приемы переработки пластмасс: вальцевание, каланд­рирование, экструзия, прессование, литье, промазывание, пропитка, полив, напыление, сварка, склеивание и др.

Смешение композиций - это процесс повышения однородно­
сти распределения всех ингредиентов по объему полимера иногда с дополнительным диспергированием частиц. Смешение может быть периодическим и непрерывным. Конструкция и характер работы смесителей зависят от вида смешиваемых материалов (сыпучие или пастообразные).

Вальцевание - опе­рация, при которой пласт­масса формуется в зазоре между вращающимися валками (рис. 14.2). Пере­рабатываемая масса 2 не­сколько раз пропускается через зазор между валками 1 и 3, равномерно переме­шивается, затем перево­дится на один валок и сре­зается ножом 4. На вальцах непрерывного действия масса не только пропускается через зазор, но и движется вдоль него, а в конце процесса срезается ножом в виде узкой непрерывной ленты.

Вальцевание позволяет доброкачественно смешивать компонен­ты пластмасс с целью получения однородной массы, при этом поли­мер, как правило, переводится в вязкотекучее состояние благодаря повышению температуры при перетирании. При многократном про­пускании массы через вальцы происходит пластификация, т. е. со­вмещение полимера с пластификатором путем ускоренного взаимно­го проникновения. Вальцы позволяют перетирать и дробить компо­ненты пластмасс. Это обеспечивается тем, что при движении в зазо­ре материалы сжимаются, раздавливаются и истираются, поскольку валки могут вращаться с различной окружной скоростью.

Вальцы, на которых происходит окончательная отделка поверх­ности и калибровка, должны иметь гладкую полированную поверх­ность. По характеру работы вальцы бывают периодического и не­прерывного действия, а по способу регулирования температуры - обогреваемые (паром или электричеством) и охлаждаемые (водой).

Каландрирование - процесс образования бесконечной ленты заданной толщины и ширины из размягченной полимерной смеси, однократно пропускаемой через зазор между валками.

Конструкции каландров различаются в основном в зависимости от вида перерабатываемой массы - резиновых смесей или термо­пластов. Валки каландров изготовляют из высококачественного ко­кильного чугуна. Рабочую поверхность валка шлифуют и полируют до зеркального блеска. Валки обогреваются паром через внутрен­нюю центральную полость и периферийные каналы.

Как правило, каландрирование выполняется в комплексе с валь­цеванием в одной технологической линии.

Экструзией называется операция, при которой изделиям из пла­стмасс придают определенный профиль путем продавливания нагре­той массы через мундштук (формообразующее отверстие). Методом экструзии получают профильные (погонажные) строительные изде­лия, трубы, листы, пленки, линолеум, пороизол и многие другие. Размеры поперечного сечения изделий, изготовляемых методом экс­трузии, лежат в большом интервале: диаметр труб 05-250 мм, ши­рина листов и пленок 0,3-1,5 м, толщина 0,1-4 мм. Экструзионными машинами пользуются также для смешения композиций и гранули­рования пластмасс. Применяются экструзионные машины двух ти­пов: шнековые с одним или несколькими шнеками и шприц - машины. Наибольшее распространение нашли шнековые, или чер­вячные, экструдеры (рис. 14.4). Рабочим органом машины является винт (червяк), который осуществляет перемешивание массы и про­движение ее через профилирующую головку (дорн). В машину масса подается в виде гранул, бисера или порошка. Размягчение материала происходит за счет тепла, поступающего от обогревателей, которые устанавливаются в нескольких зонах.

Обогрев J

Рис. 14.4. Схема работы экструзионной машины:

1 - загрузочный бункер; 2 - шнек; 3 - головка; 4 - калибрующая на­садка; 5 - тянущее устройство; б - дорн; 7 - фильтр

SHAPE * MERGEFORMAT

Рис. 14.5. Схема штампования (пресс-формования): а) загрузка пресс-материала; 6) смыкание формы и прессование; в) вытал­кивание изделия; 1 - пресс-материал; 2 - обогреваемая матрица пресс - формы; 3 - обогреваемый пуансон; 4 - ползун пресса; 5 - электрообог­реватель; 6 - изделие; 7 - выталкиватель

Прессованием называют способ формования изделий в обогре­ваемых гидравлических прессах. Различают формование в пресс - формах (рис. 14.5) - при изготовлении изделий из пресс-порошков и плоское прессование в многоэтажных прессах - при изготовлении листовых материалов, плит и панелей. Прессование применяется преимущественно при переработке термореактивных полимерных композиций (фенопласты, аминопласты и др.).

Для прессования строительных листовых материалов и панелей применяют многоэтажные гидравлические прессы усилием от 10 до 50 т, обогреваемые подогретой водой или паром. Прессование на многоэтажных прессах складывается из следующих операций: за­
грузка пресса, смыкание плит, тепловая обработка под давлением, снятие давления, разгрузка. Методом плоского прессования форму­ют древесно-стружечные плиты, бумажные слоистые пластики, тек - столиты, древесно-слоистые пластики, трехслойные клееные панели. В пресс-формах изготовляют детали санитарно-технического и электротехнического оборудования, детали для отделки встроенного оборудования, оконные и дверные приборы, детали строительных машин и механизмов.

Вспенивание - метод изготовления пористых звукотеплоизо­ляционных и упругих герметизирующих пластмасс. Пористая струк­тура пластмасс получается в результате вспенивания жидких или вязкотекучих композиций под влиянием газов, выделяющихся при реакции между компонентами или при разложении специальных до­бавок (порофоров) от нагревания. Вспенивание веществ - стабили­заторов пены путем нагнетания или растворения в полимере газооб­разных и легкоиспаряющихся веществ.

Вспенивание может происходить в замкнутом объеме под дав­лением и без давления, а также в открытых формах или на поверхно­сти конструкции.

Промазыванием называется операция, при которой пластиче­ская масса в виде раствора, дисперсии или расплава наносится на ос­нование - бумагу, ткань, войлок, разравнивается, декоративно обра­батывается и закрепляется. Примером может служить промазной ли­нолеум, павинол, линкруст и др. Наносимая масса разравнивается специальным ножом-раклей, регулирующим толщину слоя и степень вдавливания. Обычно основание движется, а разравнивающий нож неподвижен; регулируется лишь его наклон и зазор. Нанесенная и разровненная масса проходит обычно этап термообработки для раз­мягчения и лучшего сцепления ее с основанием.

Пропитка состоит в окунании основы (ткани, бумаги, волокон) в пропиточный раствор с последующей сушкой. Эта операция осу­ществляется в пропиточных машинах вертикального и горизонталь­ного типа. Методом пропитки получают клеящие пленки (бакелито­вая), декоративные пленки (мочевино-меламиновые), а также полот­нища на основе стеклянных, асбестовых и хлопчатобумажных тка­ней, из которых в дальнейшем получают текстолиты.

Полив - это процесс, при котором пластическая масса распре­деляется тонким слоем на металлической ленте или барабане и, за­твердевая, снимается в виде тонкой пленки. Часто этот процесс свя­зан с испарением растворителей. Таким путем получают, например, ацетилцеллюлозные прозрачные пленки.

Литье. Различаются два вида литья: простое в формы и под дав­лением. При простом литье жидкая композиция или расплав залива­ются в формы и отвердевают в результате реакций полимеризации, поликонденсации или вследствие охлаждения. Примером служат отливка плиток пола из реактопластов, получение органического стекла и декоративных изделий из полиметилметакрилата. Охлажде­нием расплава при простом литье получают некоторые простейшие изделия из полиамидов (поликапролактама).

Литье под давлением применяется при изготовлении изделий из термопластов. Полимер нагревается до вязкотекучего состояния в нагревательном цилиндре литьевой машины (рис. 14.6) и плунжером впрыскивается в разъемную форму, охлаждаемую водой.

Давление, под которым впрыскивается расплав, может достигать 20 МПа. Таким способом изготовляют изделия из полистирола, эфи­ров целлюлозы, полиэтилена, полиамидов. Литье под давлением от­личается быстротой цикла, при этом виде переработки операции ав­томатизированы.

Формованием называют переработку листовых, пленочных, трубчатых пластмассовых заготовок с целью придания им более сложной формы и получения готовых изделий. Формование произ­водят в основном при нагревании. К главным методам формования из листов относят штампование, пневмоформование и вакуум - формование (рис. 14.7).

Рис. 14.7. Схема вакуум-формования: а) негативная форма; б) позитивная форма; в) предварительная вытяжка заготовки пу­ансоном; г) предварительная пневматиче­ская вытяжка заготовки; I-1II - позиции формования; 1 - заготовка; 2 - негатив­ная форма; 3 - стойка; 4 - зажимная рама; 5 - пуансон; 6 - позитивная форма; 7 - формовочная камера

При штамповании из листов вырезают заготовки, нагревают их, помещают в пресс-форму между матрицей и пуансоном и сжимают под давлением до 1 МПа. Таким путем изготовляют детали канали­зационных систем из винипласта, световые колпаки из оргстекла для покрытий промышленных зданий, профильные детали из текстоли - тов для строительных конструкций.

При пмевмо-формовании лист закрепляют по контуру матрицы и нагревают до слабого провисания. Затем нагретым воздухом, сжа­тым до 7-8 МПа, прижимают лист к поверхности матрицы. Разно­видностью этого способа является свободное выдувание. Таким спо­собом получают световые колпаки, емкости, кольца из полиакрила­тов, детали вентиляционных систем и химически стойкой аппарату­ры из поливинилхлорида.

При вакуум-формовании лист закрепляют по контуру полой формы, нагревают и создают разрежение в полости. Под влиянием атмосферного давления лист прижимается к поверхности формы. Таким путем изготовляют детали санитарно-технического оборудо­вания из ударопрочного полистирола, полиакрилатов, виниловых полимеров.

Напыление - способ нанесения на поверхность порошкооб­разных полимеров, которые, расплавляясь, прилипают к ней, а при охлаждении образуют прочную пленку покрытия. Различают газо­пламенное, вихревое и псевдосжиженное напыление. При газопла­менном напылении порошок полимера (полиэтилен, полиамид, по- ливинилбутироль), проходя через пламя, расплавляется и, падая на поверхность каплями, прилипает, образуя слой нужной толщины.

Сварка и склеивание служат для соединения заготовок из пла­стмасс для получения изделий заданной формы. Сварку применяют для соединения термопластических пластмасс - полиэтилена, поливи­нилхлорида, полиизобутилена и др. По способу нагревания соединяе­мых концов различают сварку воздушную (нагретым воздухом), вы­сокочастотную, ультразвуковую, радиационную, контактную.

Склеивание применяют для соединения как термопластичных, так и термореактивных пластмасс. В простейшем случае клеем для термопластичных пластмасс может служить органический раствори­тель, вызывающий набухание стыкуемых концов деталей и их сли­пание при сжатии. Чаще же используют специальные клеи. В зави­симости от условий производства и требуемой скорости соединения применяют клеи холодного и горячего отверждения.

Занимают одно из ведущих мест среди конструкционных материалов для машиностроения. Так, потребление пластмасс в этой отрасли становится соизмеримым (в единицах объема) с потреблением стали. Непрерывно возрастает также применение лакокрасочных материалов, синтетических волокон, клеев, резины и др.

Целесообразность применения полимеров в машиностроении определяется, прежде всего, возможностью удешевления продукции. При этом улучшаются также важнейшие технико-экономические параметры машин: уменьшается масса, повышаются долговечность, надежность и др. В результате внедрения полимеров высвобождаются ресурсы металла, а благодаря уменьшению отходов при переработке существенно повышается коэффициент использования материалов (средние значения коэффициента использования пластмасс примерно в 2 раза выше, чем для металлов).

Основные достоинства полимерных конструкционных материалов:

  • высокая удельная (отношение прочности к плотности);
  • износостойкость;
  • устойчивость к химическим воздействиям;
  • хорошие диэлектрические характеристики;
  • свойства полимерных материалов можно варьировать в широких пределах модификацией полимеров или совмещением их с различными ингредиентами. В частности, при введении в полимеры соответствующих наполнителей (см. ) можно получать фрикционные и антифрикционные материалы, а также материалы с токопроводящими, магнитными и другими специальными свойствами.

К недостаткам полимерных материалов относятся:

  • склонность к старению;
  • склонность к деформированию под нагрузкой (ползучесть);
  • зависимость прочностных характеристик от режимов нагружения (температуpa, время);
  • сравнительно невысокая теплостойкость;
  • относительно большой температурный коэффициент линейного расширения;
  • изменение размеров при воздействии на материал влаги или агрессивных сред.

Из пластических масс изготовляют обширный ассортимент деталей и узлов машин, а также технологическую оснастку различного назначения.

Основные области применения пластмасс в машиностроении:

Виды деталей, узлов машин и технологической оснастки и пригодные для их изготовления полимерные материалы:

  • Зубчатые и червячные колеса: полиамиды, , пентапласты , поликарбонаты, , , волокниты, текстолит, ;
  • Шкивы, маховички, рукоятки, кнопки: полиамиды, аминопласты, волокниты, текстолит, древесные пластики;
  • Ролики, катки, бегуны: полиамиды, , полипропилен, поликарбонаты, древесные пластики;
  • Подшипники скольжения: полиамиды, полипропилен, , , пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты, текстолит, древесные пластики;
  • Направляющие станков: полиамиды, эпоксипласты, текстолит;
  • Детали подшипников качения: полиамиды, поликарбонаты, полиформальдегид;
  • Тормозные колодки, накладки: фенопласты, волокниты, древесные пластики;
  • Трубы, детали арматуры, фильтры масляных и водных систем: полиэтилен, поливинилхлорид, полипропилен, поликарбонаты, стеклопластики;
  • Рабочие органы вентиляторов, насосов и гидромашин: полиамиды, полиэтилен, поливинилхлорид, полипропилен, пентапласты, поликарбонаты, стеклопластики.
  • Уплотнения: полиамиды, полиэтилен, , поливинилхлорид, полипропилен;
  • Кожухи, корпуса, крышки, резервуары: полиэтилен, аминопласты, поливинилхлорид, полипропилен, , полиакрилаты, поликарбонаты, фенопласты, стеклопластики;
  • Детали приборов и автоматов точной механики: полиамиды, полиэтилен, поливинилхлорид, полипропилен, пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты;
  • Болты, гайки, шайбы: полиамиды, полиэтилен, аминопласты, поливинилхлорид, полипропилен, пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты;
  • Пружины, рессоры, кулачковые механизмы, клапаны: полиамиды, поливинилхлорид, полипропилен, поликарбонаты, полиформальдегид, текстролит, стеклопластики;
  • Крупногабаритные элементы конструкций, емкости, лотки и др.: полиэтилен, поливинилхлорид, полистирол, стеклопластики;
  • Электроизоляционные детали, панели, щитки, корпуса приборов: полиамиды, полиэтилен, фторопласты, аминопласты, поливинилхлорид, полипропилен, полистирол, полиакрилаты, эпоксипласты, пентапласты, поликарбонаты, полиформальдегид, фенопласты, волокниты, текстолит, древесные пластики, стеклопластики;
  • Светопропускающие оптические детали (линзы, смотровые стекла и др.): полиэтилен, аминопласты, полипропилен, полистирол, полиакрилаты, поликарбонаты;
  • Копиры, контрольные шаблоны: полиэтилен, поливинилхлорид, полипропилен, эпоксипласты;
  • Холоднолистовые штампы: эпоксипласты, пентапласты, фенопласты, стеклопластики;
  • Литейные модели: полистирол, полиакрилаты, эпоксипласты, фенопласты, стеклопластики;

Ниже рассматриваются примеры использования полимерных материалов в производстве деталей общемашиностроительного назначения (подшипники, зубчатые колеса, ремни, шкивы и др.). О специфике применения этих материалов в различных отраслях машиностроения См. , , Полимеры в электротехнике, Полимеры на железнодорожном транспорте.

  • Для изготовления подшипников скольжения используют разнообразные материалы, обладающие большой износостойкостью и низким коэффициентом трения (см. Антифрикционные полимерные материалы), а также теплостойкостью, стабильностью размеров в условиях эксплуатации и длительным сроком службы при больших значениях несущей способности (произведения допустимых нагрузки и скорости скольжения). Износостойкость, несущая способность и другие свойства подшипниковых материалов резко повышаются при введении в них наполнителей (при наполнении скрытокристалличным графитом износостойкость возрастает в 1000 раз). Подшипники из графитонаполненного фторопласта-4 могут работать без смазки, а также в агрессивных средах (см. Графитопласты).
  • Основные требования к пластмассам для зубчатых колес - высокие контактная прочность и сопротивление изгибу, износостойкость, демпфирующая способность, динамическая выносливость, стабильность размеров . При использовании пластмасс, удовлетворяющих этим требованиям, повышается долговечность колес, в среднем в 1,5 раза снижается уровень шума, уменьшается чувствительность передачи к наличию смазки, снижаются требования к точности изготовления колеса. Однако единичный зуб из полиамида со стандартным контуром по статической прочности уступает зубьям из алюминия, улучшенной или закаленной стали соответственно в 1,4, 3-5 и 7 раз. Деформация зубьев из пластмассы достигает десятых долей мм, а размеры контактной площадки становятся соизмеримыми с размером зуба. Все же благодаря новым технологическим и коструктивным решениям удалось расширить области применения зубчатых колес из пластмасс, увеличить их несущую способность, повысить кинематическую точность, износостойкость и др. Армирование колес из пластмасс металлом (из него изготовляют ступицы, диск, венец и др. элементы) позволяет наиболее эффективно использовать достоинства обоих материалов.
  • Пластмассы все более широко используют вместо нержавеющих сталей и других материалов в волновых передачах , отличающихся компактностью и большими передаточными отношениями (например, от 64: 1 до 320: 1 ), а также для изготовления звездочек в цепных передачах.
  • Плоские, клиновые и зубчатые ремни из пластмасс (полиамидов, поливинилхлорида), а также из резины (см. Резино-технические изделия) могут быть использованы для передачи даже значительных мощностей. В отличие от ремней из традиционных материалов, ремни из полимерных материалов можно эксплуатировать в агрессивных средах без применения натяжных роликов. Многослойные ремни шириной 10-1200 мм, армированные синтетическими волокнами, могут быть использованы для передачи мощностей до 3600 кет при скоростях 50 -80 м/сек . Применение в ременных передачах прочных и износостойких шкивов из пластмасс, характеризующихся малой плотностью, высоким коэффициентом сцепления с ремнем, стабильностью размеров, позволяет уменьшить инерционные силы, увеличить срок службы ремней, сократить мощность, потребляемую станком, а в некоторых случаях повысить тяговую способность передачи.
  • Использование полимерных материалов для футеровок блоков и барабанов подъемных устройств повышает стойкость этих деталей и увеличивает долговечность канатов.
  • Использование труб из полимерных материалов вместо металлических приводит к упрощению их монтажа вследствие снижения массы, уменьшению гидравлических потерь и расхода мощности на транспортировку материалов, увеличению пропускной способности труб, повышению срока службы (особенно в агрессивных средах, в земле и воде) и стойкости к гидравлическому удару.
  • Применение прозрачных полимерных труб позволяет, кроме того, визуально наблюдать за движением продукта. О трубах из полимерных материалов см. также Полимеры в сельском и водном хозяйстве, Полимеры в строительстве.
  • Основным материалом для уплотнительных прокладок , которые, помимо высокой износо- и теплостойкости, должны обладать , а также стойкостью в различных агрессивных средах, служат резины на основе хлоропренового, бутадиен- нитрильного, кремнийорганических, фторсодержащих и других каучуков специального назначения (см. Каучуки синтетические, Резино-технические изделия). Для уплотнения подвижных соединений или соединений, которые подвергаются действию высоких давлений, используют обычно уплотнители из пластмасс.
  • Полимерные материалы применяют для фиксации резьбовых соединений , осуществляемой различными способами: использованием гаек из пластмасс, нарезку на которых создают при ввинчивании в них металлических болтов, применением шайб и вкладышей из пластмасс, а также с помощью быстроотверждающихся компаундов (см. Компаунды полимерные). Эти способы фиксации обеспечивают повышение срока службы резьбовых соединений, выполняющих одновременно функции уплотнительных элементов.
  • Эпоксидные и акрилатные компаунды применяют в качестве универсальных компенсаторов погрешностей при сборке узлов машин и приборов. Благодаря их использованию процесс сборки (например, редукторов) сводится к установке деталей с требуемой точностью и заливке компаундом пространства между сопрягаемыми деталями. Заполняя зазоры, компаунд компенсирует все погрешности обработки и сборки деталей. Применение компенсаторов позволяет на 2-3 класса расширить допуски на изготовление поверхностей, снизить себестоимость обработки деталей, уменьшить трудоемкость их сборки. Заданная точность замыкающего звена сборочных размерных цепей может быть обеспечена за одну выверку.
  • С помощью клеев (см. Клеи синтетические) удалось создать сборные зубчатые колеса из металлов и пластмасс, упростить сборку узлов подшипников, удешевить ремонт машин, повысить их надежность. Например, в результате применения направляющих с приклеенными накладками из антифрикционных материалов повысились эксплуатационные свойства станков и упростился их ремонт. Использование синтетических клеев при изготовлении магнитных плит привело к улучшению их электроизоляционных свойств.
  • Технологическая оснастка из пластмасс (кондукторы для сверления деталей, шаблоны для контроля деталей сложной конфигурации, штампы, приспособления для разметки и др.) легче, дешевле, проще в изготовлении, чем аналогичная металлическая. Эксплуатационные свойства такой оснастки повышаются при ее армировании металлами , применением в качестве наполнителей металлических волокон или металлизацией рабочих поверхностей (см. Металлизация пластмасс). Из пластмасс изготовляют различную литейную оснастку . Так, в промышленности широко используют метод литья деталей по выжигаемым моделям из , из фенопластов изготовляют формовочные смеси, оболочковые формы и стержни . Полимерные материалы служат также связующим в абразивном инструменте (например, при изготовлении термо- и водостойких шлифовальных шкурок).
  • Важное хозяйственное значение имеет применение лакокрасочных и других полимерных материалов для антикоррозионной защиты металлических конструкций при их сооружении, транспортировке, консервации и эксплуатации, а также для декоративной отделки и придания специальных свойств (электроизоляционных, антифрикционных и др.). Объем потребления таких материалов составляет -30% общего потребления полимерных материалов в машиностроении. См. Лакокрасочные покрытия, Антикоррозионные полимерные покрытия, Защитные лакокрасочные покрытия, Напыление.

Чтобы получить дополнительную информацию и (или) узнать последние новости по данной теме посетите тематическую закладку: . Кроме того вы можете воспользоваться и другими тематическими метками (см. ниже).

Список литературы: Лит.: ВольмирА. С, Павленко В. Ф., Пономарев А. Т., Механика полимеров, № 1, 105 A972); Применение конструкционных пластмасс в производстве летательных аппаратов, под ред. А. Л. Абибова, М., 1971; Павленко В. Ф., Силовые установки летательных аппаратов вертикального взлета и посадки, М., 1972; Булатов Г. а., Пенополиуретаны и их применение на летательных аппаратах, М., 1970; Пригода Б. А., Кокунько В. С, Обтекатели антенн летательных аппаратов, М., 1070; Scow A. L., SAMPE Journal, 8, № 2, 25 A972); Peterson G. P., AIAA Paper, № 367, 1, A971); WetterR., Kunststoffe, 10, № 10, 756 A970); Johnson Z. P., Rubber World, 161, № 6, 79 A970); Encyclopedia of polymer science and technology, v. 1, N. Y.- , 1964, p. 568. Г. С. Головкин.

Изготовляют методом литья под давлением втулки подшипников скольжения и другие детали. Основными технологическими свойствами пластмасс являются: текучесть способность материала заполнять форму при определенной температуре и давлении; усадка уменьшение размеров готовой детали по сравнению с соответствующими размерами прессформы; скорость отверждения которая зависит от свойств и соотношения смолы и отвердителя а также температуры при которой происходит процесс отверждения. Поликапроамид обладая достаточной прочностью и стойкостью...


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ МАШИН С ПРИМЕНЕНИЕМ ПОЛИМЕРНЫХ МАТЕРИАЛОВ

Виды полимерных материалов и область их применения

При производстве, техническом обслуживании и ремонте машин широко используются полимеры, пластические массы и другие искусственные композиционные материалы.

Полимеры — это высокомолекулярные органические соединения искусственного или естественного происхождения, имеющие обычно аморфную структуру.

Пластмассы — композиционные материалы, изготовленные на основе полимеров, способные при заданных температуре и давлении принимать определенную форму, которая сохраняется в условиях эксплуатации. В зависимости от числа компонентов пластмассы бывают однокомпонентные (простые) и многокомпонентные (композиционные). Простыми являются, например, полиэтилен, полистирол, состоящие из синтетической смолы. В композиционных пластмассах (фенопласты, аминопласты и др.) смола является связующим для других компонентов. Ими являются наполнители, пластификаторы, отвердители, ускорители (активаторы), красители, смазочные вещества и другие компоненты, придающие пластмассе необходимые свойства.

Доля дополнительных компонентов может достигать 70 %. Это позволяет создавать композиционные материалы, обладающие в соответствии с потребностями производства совокупностью тех или иных свойств: достаточной прочностью, виброустойчивостью, хорошей химической стойкостью против действия кислот, щелочей и других агрессивных сред, высокими фрикционными или антифрикционными, шумопоглощающими, диэлектрическими, теплоизоляционными и другими свойствами.

В ремонтном производстве полимерные материалы применяют для: заделки в деталях трещин, пробоин и раковин; склеивания; восстановления формы и размеров изношенных деталей; герметизации стыков; изготовления быстроизнашивающихся деталей или отдельных их частей.

В зависимости от способности возвращаться под действием температуры в исходное состояние различают термореактивные и термопластичные полимерные материалы.

Термопластичные материалы или термопласты при повышении температуры переходят в пластическое состояние, а при охлаждении восстанавливают свои свойства. Поэтому они могут многократно перерабатываться. Применяя различные термические способы, термопласты наносят на поверхности деталей в виде покрытий различного назначения (антифрикционные, защитные, изоляционные и т.д.). Из некоторых термопластов (полиамидов типа капролактан, АК-7 и др.) изготовляют методом литья под давлением втулки подшипников скольжения и другие детали.

Важным эксплуатационным свойством термопластов является термостабильность — время, в течение которого термопласт может выдерживать определенную температуру, сохраняя свои свойства. Основными технологическими свойствами пластмасс являются: текучесть (способность материала заполнять форму при определенной температуре и давлении); усадка (уменьшение размеров готовой детали по сравнению с соответствующими размерами пресс-формы); скорость отверждения, которая зависит от свойств и соотношения смолы и отвердителя, а также температуры, при которой происходит процесс отверждения.

При ремонте широко применяются полиэтилен, поликапроамид, фторопласт и другие термопласты.

Полиэтилен отличается хорошей пластичностью, которая сохраняется даже при низкой температуре, что позволяет применять его для изготовления и восстановления гибких изделий (труб) и защитных покрытий.

Поликапроамид, обладая достаточной прочностью и стойкостью против воздействия щелочей и различных горючесмазочных материалов, применяется в качестве конструкционного материала для изготовления шестерен и втулок, нанесения на детали износостойких покрытий.
Фторопласт , благодаря высокой температуре плавления (327 °С), низкому коэффициенту трения, высокой износостойкости и практически отсутствию адгезии при контакте с металлами, применяется для изготовления втулок подшипников скольжения, работающих при температуре до 250 °С. По химической стойкости он превосходит все материалы, что обуславливает широкую область его применения в различных агрессивных средах. Отсутствие адгезионного взаимодействия с металлами затрудняет применение фторопласта для нанесения на них защитных покрытий напылением. Поэтому обычно применяют механическое крепление фторопластовых накладок к восстанавливаемым изделиям.

Термореактивные материалы или реактопласты (текстолит, волокнит, стекловолокнит, эпоксидные композиции и др.) отличаются тем, что при нагревании в результате химических реакций они необратимо переходят в твердое, неплавкое и нерастворимое состояние. При повторном нагревании они могут разрушиться. Из термореактивных пластмасс при ремонте широко применяются композиции, включающие эпоксидные (ЭД-16, ЭД-20), фенольно-формальдегидные и другие смолы, отвердители, пластификаторы и иные компоненты.

При смешивании с отвердителем (полиэтиленполиамин, ароматические амины и др.) эпоксидная смола переходит в твердое и нерастворимое состояние. Этот процесс в зависимости от отвердителя может происходить при различной температуре. Например, при использовании в качестве отвердителя фтористого бора отвердение происходит при отрицательной температуре. С увеличением доли отвердителя повышается хрупкость композиционного материала, а при ее уменьшении процесс отвердения удлиняется, поэтому для получения качественного полимерного материала необходимо соблюдать установленные инструкциями рекомендации по соотношению смолы и отвердителя. Это относится и к другим компонентам полимерного состава.

Пластификаторы (дибутилфталат, триэтиленгликоль, тиокол и др.) служат для повышения ударной вязкости и прочности композиционного материала, снижения его чувствительности к термоциклическим напряжениям, придания эластичности и других требуемых свойств.

Наполнители неорганические (металлический порошок, графит, кварцевая и слюдяная мука, тальк, асбест, волокна углерода, стекловолокно, стеклоткань и др.) и органические (бумага, целлюлоза, древесная мука, хлопчатобумажная ткань и др.) позволяют управлять физико-механическими свойствами композиционного материала для повышения прочности, износостойкости, теплостойкости и т.д. Например, изменяя соотношение между содержанием металлических и неметаллических порошков, можно уменьшить усадку нанесенного полимерного покрытия и различие в значениях коэффициентов линейного расширения детали и покрытия, а за счет введения графита повысить его износостойкость. Применение волокнистых наполнителей позволяет получать на основе фенольно-формальдегидных смол широко применяемые для изготовления деталей машин волокнит, стекловолокнит и другие материалы повышенной прочности.

Термореактивные пластмассы применяют для заделки вмятин, трещин, пор и раковин в деталях из металлических и неметаллических материалов, для восстановления в корпусных деталях посадочных поверхностей под подшипники, а также изготовления новых деталей.

В зависимости от свойств пластмассы могут перерабатываться в детали в вязкотекучем состоянии (литье под давлением, выдавливание, прессование), в высокоэластичном состоянии (штамповка, пневмо- и вакуум формовка); в твердом состоянии (обработка, резание, склеивание, сварка) и другими методами.

Применение полимерных материалов при ремонте машин по сравнению с другими способами восстановления позволяет на 20—30 % снизить трудоемкость и на 15—20 % себестоимость ремонта, а также исключить сложные технологические процессы, характерные при нанесении металлических материалов и их обработке. Существенно (на 40—50 %) уменьшается расход конструкционных материалов (зачастую дефицитных и дорогих — цветных металлов и нержавеющих сталей) и соответственно — вес деталей. При этом полимерные материалы не снижают усталостную прочность восстановленных ими деталей, что во многих случаях позволяет не только заменить сварку или наплавку, но и восстанавливать детали, которые другими технологическими способами восстановить или невозможно, или невыгодно, или это сопряжено с тяжелыми условиями труда.

Для практического применения полимерных материалов обычно не требуется сложное технологическое оборудование, что важно в условиях ремонтного производства.

Недостатками полимерных материалов по сравнению с металлами являются меньшая прочность, интенсивное старение, низкая теплопроводность и тепловая стойкость отдельных материалов.

Эластомеры и герметики . Для герметизации и восстановления посадок неподвижных соединений применяются эластомеры и герметики, в том числе анаэробные. Эластомеры выпускаются в виде листов толщиной 2—5 мм, из которых на основе ацетона готовят рабочий раствор. Для этого необходимое количество эластомера разделяют на мелкие кусочки, которые заливают в стеклянной емкости расчетным в соответствии с инструкцией количеством ацетона и выдерживают в нем до растворения. Полученный раствор необходимо хранить в плотно закрытых емкостях. Удобны готовые к применению эластомеры на основе резины холодного химического отверждения, которые представляют собой двухкомпонентные материалы, поставляемые в жидком или пастообразном состоянии. Их применяют для восстановления резиновых покрытий деталей, шлангов, изоляции, а также для отливки нестандартных форм манжет, уплотнений и прокладок.

Покрываемая поверхность детали подвергается пескоструйной очистке или шлифованию до полной очистки и придания ей повышенной шероховатости для улучшения сцепления с покрытием. Перед нанесением покрытия подготовленную поверхность обезжиривают специальным средством или ацетоном. Оба компонента наносимого материала (основу и активатор) смешивают между собой для обеспечения однородности смеси и удаления из нее воздуха. При устранении больших трещин и сколов рекомендуется покрытие армировать стеклотканью, что увеличивает его прочность.

Наиболее эффективным герметизирующим материалом являются герметики на основе полимеров и олигомеров. Применяются герметики термопластичные и термореактивные, высыхающие и невысыхающие, полимеризующиеся, вулканизирующие и нетвердеющие.

Таблица 4.11

Анаэробные герметики представляют собой однокомпонентные материалы, которые содержат акриловые и сложные метакриловые эфиры и перекись водорода. Они эффективны для герметизации резьбовых и фланцевых соединений пневматических и гидравлических систем с использованием различных материалов в сопрягаемых поверхностях. При этом кроме герметизации увеличиваются прочность и жесткость соединений, устраняются зазоры (0,2—0,7 мм) и обеспечивается защита поверхностей от коррозии. Время полной полимеризации для разных герметиков от 24 до 72 часов. Начало эксплуатации возможно сразу после отверждения. При выборе марки герметика учитывается зазор между уплотняемыми деталями и температура окружающей среды, которая влияет на вязкость состава.

Анаэробные герметики эффективны также при пропитке (заделке) мелких трещин и пор в заготовках, полученных методами литья и давления, и в сварных швах. В этом случае герметик наносится без применения активатора на очищенную и обезжиренную поверхность с дефектами 2—3 раза через 15—20 мин. Для ускорения отверждения герметика изделие выдерживают при температуре 60—90 °С в течение 0,5—2 ч.

В ремонтном производстве широко применяются анаэробные составы типов ДН, Анатерм, Унигерм и др. Они представляют собой композиции, которые могут длительное время находиться в текучем состоянии и отверждаться при отсутствии контакта с кислородом воздуха. Время отверждения зависит от температуры окружающей среды, а максимальная прочность отвержденного материала достигается через 24 ч.

Эти составы обладают высокой проникающей способностью и поэтому способны заполнять микронеровности и микротрещины в деталях, зазоры в сопряжениях между ними, равные 0,05—0,2 мм. При полимеризации они переходят в твердое устойчивое состояние с образованием прочного соединения, стойкого к изменению температуры в диапазоне -60... +150 °С и агрессивному воздействию окружающей среды. Это позволяет пропитывать и заделывать поры в литых и прессованных заготовках, надежно фиксировать взаимное положение деталей в различных соединениях (гладких плоских и цилиндрических, резьбовых, профильных и др.). При этом сопрягаемые детали могут быть изготовлены из разных материалов в любых сочетаниях.

Весьма эффективно применение анаэробных материалов при сборке неподвижных соединений. Например, при установке подшипников с применением анаэробного материала не только устраняются коррозионные и другие разрушения посадочных поверхностей, но также обеспечивается беззазорное сопряжение с ними колец подшипников. После снятия подшипника, установленного таким образом, посадочная поверхность сохраняется чистой, и при последующем ремонте требуется лишь повторно нанести герметик без ее обработки.

Анаэробные материалы не взаимодействуют с водой, растворителями, смазочными материалами и обеспечивают надежную антикоррозионную защиту уплотняемых деталей. Это позволяет значительно повысить надежность конструкций. Важно и то, что большинство из этих материалов являются экологически безопасными.

Перед нанесением анаэробного герметика деталь должна быть тщательно очищена от загрязнений соответствующими методами (механическим, химическим и др.) и обезжирена.

Клеевые материалы . Клеевые материалы часто являются растворами различных синтетических смол в органических растворителях. Их выпускают в виде смешиваемых перед использованием компонентов, а также в виде пленки, порошка, гранул. В ремонтном производстве чаще применяются эпоксидные клеевые материалы, что обусловлено их высокой адгезией и нейтральностью по отношению к склеиваемым материалам, малой усадкой, устойчивостью к коррозионным и другим воздействиям. Армирование стекловолокном расширяет область применения этих клеевых материалов и позволяет устранять большие по размерам пробоины и трещины в деталях, работающих при температуре -70... +120 °С. Недостатком эпоксидных клеевых композиций является токсичность компонентов.

Широко применяются также клеи акриловые (типов АН, КВ), цианакриловые (типов ТК, КМ, МИГ) и силиконовые, которые позволяют прочно соединять между собой детали из различных материалов, уплотнять зазоры и трещины, снижать вибрацию и шум, изготавливать уплотнения и прокладки любой формы. Особенностью цианакриловых клеев является быстрое отверждение (для большинства их марок время схватывания составляет 1 мин). Рабочая температура клеевых соединений может изменяться от -50 до +250 °С.

Применение клеевых композиций позволяет склеивать детали, устранять трещины длиной до 150 мм, пробоины площадью до 2,5 см 2 , сколы, коррозионно-эрозионные и др. разрушения, а также создавать износостойкие графитовые и иные покрытия.

По сравнению со сваркой можно соединять детали из разнородных материалов при отсутствии внутренних напряжений и коробления с применением более простого технологического оборудования, при меньшей трудоемкости и стоимости ремонта.

Металлополимеры представляют двухкомпонентные композиционные материалы, которые на 70—80 % состоят из мелкодисперсных металлических порошков (никель, хром, цинк) и специальных олигомеров (полимеров с низкой молекулярной массой), образующих при отверждении полимерные покрытия повышенной прочности за счет использования поверхностной энергии материалов. Металлополимеры отличаются высокой адгезией к различным металлическим и неметаллическим материалам, включая пластмассы, за исключением фторопласта и полиэтилена, что позволяет производить ими высококачественную холодную молекулярную сварку, относящуюся к прогрессивным высокотехнологичным способам восстановления деталей машин. Она выполняется с помощью композиционных металлополимерных материалов, которые могут подвергаться обработке резанием.

Кроме того, эти материалы надежно защищают детали машин от коррозии и эрозии в агрессивных средах с повышенной влажностью и испаряемостью. Их рабочая температура находится в диапазоне -60... +180 °С при максимальной термостойкости до 200—220 °С. Предел прочности современных металлополимеров составляет (МПа): при сжатии 120—145, при изгибе 90—110, на сдвиг 15—25. Важными преимуществами металлополимерных материалов является отсутствие изменения объема при полимеризации, их эластичность, исключающая негативное влияние различия в коэффициентах линейного расширения материалов детали и покрытия.

Благодаря этим свойствам металлополимеры позволяют создавать методом холодной сварки высокопрочные соединения различных материалов, восстанавливать размеры, форму и целостность деталей, наносить на их рабочие поверхности износостойкие покрытия с эффектом самосмазывания, решать другие задачи ремонта.

Металлополимеры применяются для устранения аварийных течей в трубопроводах и емкостях, восстановления посадочных мест под подшипники качения на валу и в корпусе, резьбовых соединений и «разбитых» шпоночных пазов, устранения дефектов чугунного и стального литья (раковины, трещины), ремонта корпусных деталей (выбоины, сколы и т.д.), а также для защиты деталей машин от коррозии, абразивного износа, эрозии.

Преимущества применения металлополимеров :

— не требуются термическое или механическое воздействие на восстанавливаемую поверхность, специальное технологическое оборудование и защитная среда;

— экологически безопасные условия труда, так как применяемые компоненты металлополимера не содержат и не образуют при взаимодействии между собой и с покрываемым материалом летучие токсичные вещества;

— пожаробезопасность ремонтно-восстановительных работ.

Нанесение полимерных материалов на детали

В ремонтном производстве полимерные покрытия наносят на детали газопламенным методом, а также расплавлением порошка в псевдоожиженном состоянии.

Газопламенное напыление порошковых полимерных материалов осуществляется на установках аналогично напылению порошковых металлических материалов. Покрываемые поверхности тщательно очищают от всех видов загрязнений и окислов, а поверхности, не подлежащие покрытию, защищают экранами из фольги или асбеста. Перед напылением деталь покрывают теплоизоляционным грунтом и нагревают газовой горелкой до температуры, превышающей температуру плавления полимерного порошка, что предохраняет покрытия от растрескивания после охлаждения.

При напылении порошок полимера подается в газовое пламя инжекторной газовой горелки и струей сжатого воздуха под давлением 0,4—0,6 МПа в расплавленном состоянии наносится на поверхность детали. Порошок расплавляется под действием газового пламени и предварительно нагретого изделия. Используются специальные порошки, например, ТПФ-37, ПФН-12, а также полиэтилен, капрон, полистирол и различные составы из этих и других полиамидных материалов с наполнителями. Толщина покрытия может достигать 10 мм. За один проход покрывается поверхность шириной 20—70 мм. После нанесения покрытия его дополнительно прогревают пламенем горелки или в нагревательном устройстве и для уплотнения прокатывают металлическим валиком.

При напылении неметаллических материалов деталь часто не подогревают, а покрывают специальным клеем, обеспечивающим более прочное сцепление покрытия с изделием.

При ремонте машин газопламенное напыление полимерных материалов применяют для заделки мелких дефектов деталей и следов сварки, нанесения антифрикционного, антикоррозионного, электроизоляционного, теплоизоляционного и декоративного покрытий.

Нанесение покрытия в псевдоожиженном слое порошка . Полимерное покрытие на деталях создается за счет расплавления порошка с размером частиц 0,1—0,15 мм, находящегося в псевдоожиженном состоянии, под действием тепла предварительно нагретой детали. Разновидности этого метода различаются способом перевода наплавляемого порошка в псевдоожиженное состояние. Из них получили применение вихревой, вибрационный и комбинированный способы.

При вихревом методе псевдоожиженное (взвихренное) состояние порошка создается потоком воздуха или инертного газа. Оборудование представляет собой камеру 2 (рис. 4.65), которая разделена на две части пористой перегородкой 6 и фильтром 5, обеспечивающими поступление воздуха из нижней части камеры в верхнюю. В верхней части камеры на фильтр насыпают слой наплавляемого порошка, толщина которого должна быть не менее 100 мм. Фильтр 5 препятствует засорению порошком отверстий в перегородке и пересыпанию его из верхней части камеры в нижнюю.

Рис. 4.65. Схема установки для вихревого напыления полимерного покрытия: 1 — баллон; 2 — камера; 3 — порошок; 4 — напыляемая деталь; 5 — тканный фильтр; 6 — пористая перегородка; 7 — вытяжное устройство; 8 — отсасывающее устройство

Из баллона 1 в нижнюю часть камеры подают под давлением 0,1—0,2 МПа инертный газ, который, пройдя через перегородку и фильтр, приводит порошок 3 во взвешенное (псевдоожиженное) состояние.

Восстанавливаемую деталь 4, нагретую до температуры выше температуры плавления данного полимера, помещают в псевдоожиженный слой полимерного порошка, который, контактируя с нагретой деталью, расплавляется, образуя на ней тонкослойное покрытие. Места, не подлежащие покрытию, необходимо изолировать фольгой, жидким стеклом или другим легко удаляемым материалом.

В зависимости от температуры нагрева детали, времени нахождения ее в порошке, теплопроводности и температуры его плавления толщина покрытия может составлять 0,08—1 мм. Качественное покрытие формируется независимо от сложности формы детали, что является существенным преимуществом данного способа. Он находит применение для создания антифрикционных и защитных покрытий.

Для снятия внутренних напряжений деталь после нанесения покрытия нагревают и выдерживают в масле при температуре 150—160 °С в течение 15—60 мин.

Вибрационным способом псевдоожиженное состояние наплавляемого порошка создается за счет сообщения камере специальным вибратором колебаний с частотой 50—100 Гц. Это обеспечивает более равномерное и качественное покрытие толщиной до 1,5 мм. По сравнению с вихревым вибрационный способ является более экономичным, так как не требуется сжатый воздух, а благодаря тому, что деталь не охлаждается потоком газа, исключены связанные с этим потери тепла, накопленного ею при нагревании перед нанесением покрытия. За счет этого, при прочих равных условиях, обеспечивается большая толщина формируемого покрытия. После нанесения покрытия деталь помещают в камеру для оплавления.

Комбинированный (вибровихревой) способ представляет собой сочетание рассмотренных выше. При этом способе камере с псевдоожиженным газом порошком сообщают с помощью специального устройства колебания с частотой 50—100 Гц и амплитудой до 10 мм. Благодаря этому повышается качество покрытия и обеспечивается возможность наносить покрытия большей толщины, чем при вихревом или вибрационном способе.

Достоинства вибровихревого метода по сравнению с вихревым и вибрационным следующие:

— надежное и более равномерное псевдоожижение порошка по всему объему, включая порошки, склонные к слипанию и комкованию;

— увеличение до 2 раз отношения объема порошка в псевдоожиженном состоянии к объему насыпного порошка;

— хорошее псевдоожижение смеси порошков полимеров и наполнителей и отсутствие их расслоения во время формирования покрытия;

— равномерная по высоте детали и увеличенная при тех же условиях толщина покрытия.

Восстановление целостности деталей и герметичности разборных соединений

С применением полимерных материалов восстанавливают целостность деталей путем заделки дефектов в виде трещин и пробоин или склеивания.

Трещины в корпусных деталях устраняют с помощью клеевых композиций на основе эпоксидных смол и других материалов. Они выбираются в зависимости от материала детали и размеров трещин. Существуют клеевые составы для ремонта чугунных, стальных, алюминиевых и пластмассовых деталей, некоторые из них указаны в табл. 4.11. При восстановлении деталей, работающих в условиях вибрации, в эпоксидные составы вводят до 30 % тонко измельченной слюды и резины.

Применение полимерных материалов дает хорошие результаты только при тщательной подготовке поверхности в зоне дефекта. Для обеспечения надежной адгезии полимера с деталью ее поверхность должна быть тщательно очищена от загрязнений, зачищена и обезжирена. Для улучшения сцепляемости полимера с поверхностью детали на ней создают повышенную шероховатость. Следы краски и коррозии на подготовленной поверхности не допускаются.

Типовая технология заделки трещин в корпусной детали включает следующие операции:

1. Подготовка детали к ремонту. Она включает: засверливание на концах трещины отверстий диаметром 2,5—3 мм; разделывание фаски (при толщине стенки свыше 1,5 мм) вдоль трещин под углом 60—70° на глубину 1—3 мм; зачистка до металлического блеска прилегающей к трещине поверхности шириной 25—30 мм; обезжиривание зачищенной поверхности. При длине трещин до 50 мм фаску допускается не снимать.

2. Приготовление полимерного материала в соответствии с рекомендациями для данного материала. Например, эпоксидная композиция готовится в следующей последовательности: разогревание эпоксидной смолы до жидкого состояния; смешивание ее в определенной пропорции с пластификатором; введение в состав необходимых наполнителей и тщательное перемешивание. Непосредственно перед применением в эпоксидный состав добавляют и тщательно перемешивают отвердитель. Полученный состав должен быть использован в течение 20—30 мин.

3. Нанесение полимерного состава, соответствующего материалу детали, и втирание его в трещину. Эпоксидный состав затвердевает при комнатной температуре или с применением дополнительного нагревания после частичного отверждения и выдерживания при температуре 80 °С. Нагревание детали сразу после нанесения состава не допускается, так как приводит к его отеканию, неравномерности по толщине и недостаточной прочности.

4. Испытание на герметичность заделанной трещины под давлением 0,3—0,4 МПа. Просачивание воды через заделанную трещину не допускается.

Для повышения прочности соединения при длине трещин более 30 мм применяют стеклотканевые накладки, которые укладывают в несколько слоев с нанесением между ними клея. Предварительно их очищают в кипящей воде в течение 2—3 ч и обезжиривают ацетоном. Первая накладка должна перекрывать трещину на 15—20 мм, а каждая последующая — перекрывать контур предыдущей накладки на 5—10 мм. Каждую накладку прокатывают валиком для удаления из-под нее воздуха и уплотнения соединения. Количество накладок зависит от длины трещины и обычно не превышает трех. Отставание накладок не допускается.

При длине трещины более 150 мм применяют дополнительно металлическую накладку толщиной 1,5—2 мм с перекрытием трещины на 40—50 мм. Ее устанавливают на клеевой состав с последующим механическим скреплением с восстанавливаемой деталью винтами, расположенными на расстоянии 50—70 мм друг от друга.

Детали с пробоинами также ремонтируют с установкой накладок. При диаметре пробоин до 25 мм их изготавливают из стеклоткани, а при большем диаметре применяют металлические пластины, которые должны плотно прилегать к детали. Для этого их прикрепляют винтами, а также предусматривают дополнительные сверления в пластине и стенке корпуса, которые заполняются клеевым составом, повышающим после отверждения прочность заделки пробоины.

Рассмотренный способ заделки трещин и пробоин может применяться, если дефекты расположены на плоских поверхностях деталей. На фасонных поверхностях эти дефекты устраняют обычно сваркой или комбинированным способом, когда на сварочный шов для его герметизации наносят слой эпоксидной композиции.

Хорошие результаты при заделке трещин дает применение фигурных стягивающих вставок с последующей герметизацией трещины нанесением полимерного материала.

Склеивание при ремонте машин применяется для соединения между собой частей детали или разных деталей из одинаковых и различных (металлических и неметаллических) материалов. Применяют клеи типов БФ, ВС, ВК, эпоксидные составы и др. Технология склеивания включает подготовку соединяемых поверхностей, нанесения на них клеевого состава, соединение деталей между собой и при необходимости термообработку для полного его отверждения и повышения прочности.

Подготовка поверхностей при склеивании проводится аналогично, как при заделке трещин. Для обеспечения одинаковой толщины клеевого слоя требуется более тщательная пригонка склеиваемых поверхностей друг к другу, а их шероховатость после зачистки должна составлять примерно Rz = 20 мкм для лучшего сцепления с клеем.

Для склеивания металлических деталей между собой применяются клеи БФ-2 и БФ-4, представляющие спиртовые растворы термореактивных смол. Они имеют теплостойкость до 80 °С, а предел прочности клеевого соединения при сдвиге составляет 40—60 МПа. Клей наносят в 2—3 слоя так, чтобы их общая толщина составляла 0,1—0,2 мм. При большей толщине сила сцепления клея с деталью уменьшается в 1,5—2 раза. Склеиваемые детали сжимают между собой под давлением 0,5—1 МПа и в этом состоянии выдерживают при температуре 140—150 °С в течение 0,5—1 ч.

Клей БФ-2 применяют также для сборки неподвижных соединений при зазоре между сопрягаемыми деталями до 0,15 мм. При большей величине зазора используется эпоксидный состав, который наносят в один слой.

Клей ВС-10Т, представляющий раствор синтетических смол в органических растворителях, применяется для приклеивания фрикционных накладок, работающих при температуре -60... +100 °С.

Восстановление неподвижных цилиндрических и резьбовых соединений

Для восстановления цилиндрических соединений типа кольцо подшипника — корпус, цилиндрический стакан — корпус применяют полимерные композиции, эластомеры и анаэробные герметики. Во всех случаях поверхности зачищают до чистого металла, обезжиривают ацетоном и высушивают. Применяют два способа восстановления таких соединений с помощью полимерных материалов.

Первый способ характеризуется тем, что отверждение полимерного материала производится после сборки соединения. Он применяется обычно при зазоре в соединении до 0,2 мм. На поверхность детали наносят полимерный материал (эпоксидный состав А или металлополимер), который выдерживают определенное время на открытом воздухе для предварительного отверждения, собирают соединение, удаляют излишки нанесенного материала, а оставшийся между соединяемыми деталями материал подвергается отверждению. В результате создается беззазорное соединение деталей.

Второй способ отличается тем, что нанесенный полимерный материал обрабатывают, обычно растачиванием, после его отверждения для получения номинального или ремонтного размера восстанавливаемой поверхности. Более эффективным и простым в реализации по сравнению с растачиванием является способ восстановления посадочных поверхностей в корпусных деталях методом размерного калибрования отверстий, покрытых полимерным материалом. Калибрование проводится после частичного его отверждения и позволяет исключить операцию растачивания восстанавливаемого отверстия.

При применении этого способа выполняются следующие основные операции: очистка и обезжиривание восстанавливаемого отверстия; нанесение на подготовленную поверхность полимерного материала толщиной 1—1,5 мм и частичное его отверждение; калибрование восстанавливаемого отверстия; окончательное отверждение нанесенного материала и контроль качества покрытия.

Калибрование полимерного покрытия 1 (рис. 4.66) производится на прессовом оборудовании, специальных стендах или металлорежущих станках (вертикально-сверлильных или токарных) с помощью оправки 2, которую под действием усилия Р проталкивают без относительного вращения через восстанавливаемое отверстие. Оправку предварительно смазывают маслом или техническим солидолом для уменьшения трения.

Метод калибрования позволяет формировать покрытое полимерным составом отверстие под заданный (номинальный или ремонтный) размер соединения деталей, обеспечивая высокую производительность и стабильное качество восстановления.

При ремонте неподвижных подшипниковых соединений (корпус-подшипник, вал-подшипник и др.) часто применяют также эластомеры и герметики. Эластомер наносят послойно с определенным интервалом времени между слоями до получения заданной толщины покрытия. Толщина одного слоя находится в пределах 0,01—0,015 мм, а допускаемая его общая толщина зависит от марки наносимого материала и применяемой технологии. При необходимости проводят термообработку покрытия, режим которой зависит от его состава. Неподвижные соединения с покрытием из эластомера или герметика собирают запрессовкой с натягом 0,01—0,03 мм.

Благодаря малой толщине одного слоя покрытия применение эластомеров эффективно также для восстановления неподвижных соединений при ослаблении посадки, например, между кольцом подшипника или стаканом и корпусом.

При износе посадочного отверстия в корпусной детали эластомер наносят на поверхность наружного кольца подшипника (стакана) до получения необходимой посадки в соединении.

Часто посадочные поверхности в корпусах восстанавливают вклеиванием с помощью эпоксидного состава А изготовленных с необходимой точностью втулок. В этом случае последующая механическая обработка не требуется. Посадочные отверстия восстанавливают также с применением полимерных материалов и свертных втулок. Втулку вклеивают в восстанавливаемое отверстие и после частичного отверждения полимерного материала раскатывают до получения необходимого размера.

Для фиксации колец подшипников в корпусе или на валу с помощью анаэробных герметиков подготовленные поверхности сопрягаемых деталей покрывают одинаковым по толщине слоем герметика. Для повышения точности восстанавливаемого соединения сопрягаемые детали центрируют относительно друг друга с помощью специального приспособления и выдерживают в нем при комнатной температуре, пока анаэробный материал не приобретет прочность, обеспечивающую сохранение относительного положения сопрягаемых деталей вне этого приспособления. В зависимости от марки герметик приобретает полную прочность через 3—24 ч. Марку герметика выбирают в зависимости от зазора в соединении. Например, максимальный зазор в соединении при применении герметика АН-1 составляет 0,07 мм, а герметика АН-6 — 0,7 мм. С увеличением толщины слоя герметика долговечность соединения снижается. Для повышения прочности и расширения технологических возможностей в герметики вводят наполнители.

Для восстановления резьбовых поверхностей и соединений применяются эпоксидные составы, металлополимеры и герметики.

Технология восстановления резьбовых поверхностей методом холодной сварки с помощью металлополимеров отличается простотой и малой трудоемкостью. Резьбовую поверхность эталонного болта смачивают специальной разделительной жидкостью (двухпроцентным раствором поли-изобутилена в бензине) и покрывают металлополимером, например, ремонтно-композиционным материалом. Затем болт ввинчивают в очищенное и обезжиренное восстанавливаемое резьбовое отверстие. Благодаря разделительной жидкости, металлополимер сцепляется только с материалом восстанавливаемой детали. После затвердевания металлополимера болт вывинчивают из отверстия. Высокое качество восстановления резьбовых поверхностей возможно только при правильном выборе полимерного материала исходя из его свойств и условий эксплуатации резьбового соединения.

Сильно изношенные резьбовые отверстия в корпусных деталях часто восстанавливают установкой ввертышей, для более надежного закрепления которых в детали используется эпоксидный состав А.

При небольшом износе резьбовое соединение восстанавливают путем нанесения эпоксидного состава на подготовленные резьбовые поверхности обеих деталей соединения. При износе до 0,3 мм применяют состав Е или анаэробный герметик, а при износе более 0,3 мм — составы Б или В в зависимости от материала детали. Для стопорения резьбовых соединений применяют анаэробный герметик или состав Е. Эффективность использования указанных материалов зависит от соблюдения режима их отверждения и требований к подготовке поверхностей.

Восстановление деталей прессованием

Прессование применяется для ремонта деталей с помощью пластмассы. Восстанавливаемую деталь помещают в пресс-форму, рабочая полость которой имеет размеры новой детали, и в нее подают пластмассу. Для термореактивных пластмасс применяют компрессионное, а для термопластичных — литьевое прессование.

При компрессионном прессовании восстанавливаемую деталь 7 (рис. 4.67) устанавливают с базированием по элементу 6 в нижнюю часть 5 пресс-формы на опору 9. На нижнюю часть устанавливают верхнюю часть 3 пресс-формы и через отверстие 2 засыпают термореактивный порошок, который расплавляют нагревательным устройством 4.

Рис. 4.67. Схема компрессионного прессования: 1 — пуансон; 2 — загрузочное отверстие; 3 — верхняя часть пресс-формы; 4 — нагревательное устройство; 5 — нижняя часть пресс-формы; 6 — базирующий элемент; 7 — деталь; 8 — выталкиватель; 9 — опора; 10 — слой пластмассы

Под действием давления, создаваемого пуансоном 1, расплав порошка заполняет в пресс-форме свободные полости, в результате чего на детали 7 создается пластмассовый слой 10. После охлаждения деталь из пресс-формы удаляется выталкивателем 8.

При литьевом прессовании термопластичный полимерный материал расплавляют в литьевой машине и подают под давлением через литник 1 (рис. 4.68) в пресс-форму, между верхней 2 и нижней 3 частями которой предварительно устанавливают восстанавливаемую деталь 4. Пресс-форму до заполнения полимерным материалом подогревают до температуры 80—100 °С. В результате заполнения свободного пространства в пресс-форме полимерным материалом он образует на детали 4 слой 10 необходимой толщины. Прессованием можно восстанавливать вкладыши подшипников, крыльчатки водяных насосов и т.д.

Особенности механической обработки полимерных покрытий

Особенности механической обработки полимерных покрытий обусловлены их свойствами. Из-за абразивного действия наполнителей износ режущего инструмента при обработке полимерных материалов может быть больше, чем при обработке металлов. Низкая теплопроводность полимерного материала является причиной более интенсивного отвода тепла из зоны резания через режущий инструмент, что требует его надежного охлаждения. Для охлаждения инструмента и одновременного удаления стружки рекомендуется использовать не смазочно-охлаждающую жидкость, а сжатый воздух. Во избежание выкрашивания покрытия под действием сил резания необходимо применять остро заточенные инструменты. Диаметр сверла следует выбирать на 0,5—0,15 мм больше диаметра отверстия, указанного на чертеже, так как диаметр отверстия, просверленного в полимере, обычно уменьшается.

Шлифование полимеров выполняют абразивными кругами со скоростью резания 30—40 м/с. Для обработки термопластов рекомендуется применять не цельные из абразивного материала, а круги, набранные из плотных полотняных, суконных и фланелевых кружков. Диаметр кругов 300—500 мм, толщина 80—90 мм. Их пропитывают абразивной пастой из тонко измельченной пемзы с водой. Шлифование должно вестись при легком прижиме круга к обрабатываемой поверхности, чтобы исключить разогревание покрытия.

Для шлифования термореактивных материалов применяют белый электрокорунд с зернистостью 46 и твердостью СМ-1. Глубина резания до 0,5 мм, скорость перемещения детали 0,5 м/мин, скорость резания 35 м/с.

При использовании полимерных материалов, особенно эпоксидных композиций и синтетических клеев, необходимо строго соблюдать меры техники безопасности, так как многие компоненты, входящие в их состав, токсичны и огнеопасны.

Другие похожие работы, которые могут вас заинтересовать.вшм>

9460. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ МАШИН 9.47 MB
Восстановление детали независимо от степени износа возможно различными экономически целесообразными методами. Выбор конкретного метода зависит в первую очередь от того какие эксплуатационные свойства детали должны быть обеспечены при ее восстановлении. К ним относятся: целостность и масса детали распределение массы между отдельными элементами и ее уравновешенность; сплошность состав и структура материала; усталостная прочность жесткость и другие характеристики детали; точность геометрической формы размеров и относительного...
9476. РЕМОНТ ТИПОВЫХ ДЕТАЛЕЙ И УЗЛОВ МАШИН. ПРОЕКТИРОВАНИЕ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ВОССТАНОВЛЕНИЯ ДЕТАЛЕЙ 8.91 MB
Высокая экономическая значимость этого при ремонте машин обусловлена тем что восстановлению подвергаются их наиболее сложные и дорогие детали. Виды технологических процессов восстановления Технологический процесс восстановления детали представляет совокупность действий направленных на изменение ее состояния как ремонтной заготовки с целью восстановления эксплуатационных свойств. Единичный технологический процесс предназначен для восстановления конкретной детали независимо от типа производства Типовой технологический процесс разрабатывается...
9462. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ПРАВКОЙ 9.43 MB
Основное назначение сварки восстановление целостности детали создание неразъемных соединений между частями одной детали или разными деталями. Виды сварки. Основные применяемые в ремонтном производстве виды сварки приведены в табл.1 Разновидности и технические возможности способов сварки.
12119. Получение из высокоуглеродистых шунгитовых пород многофункционального наноразмерного наполнителя полимерных композиционных материалов 17.69 KB
Краткое описание разработки Углеродные наполнители широко используются при создании многофункциональных композиционных материалов работающих в условиях агрессивных сред и высоких температур. Применение шунгитового наполнителя ШН позволяет расширить спектр используемых полимерных матриц и области применения углеродных наполнителей благодаря влиянию ШН на процесс переработки композиционных материалов. В основу получения НШН была положена задача разработки высокотехнологичного экологически безопасного и экономичного способа переработки...
9470. ВОССТАНОВЛЕНИЕ ДЕТАЛЕЙ ЭЛЕКТРОЛИТИЧЕСКИМИ И ХИМИЧЕСКИМИ ПОКРЫТИЯМИ 3.78 MB
Электролитическое наращивание металлов основано на явлении электролиза – химического процесса, происходящего при прохождении постоянного тока через электролит, которым служит раствор солей металла, наращиваемого на изношенную деталь. Электроды 3 и 4 опущены в электролит и подключены к источнику питания...
9466. Восстановление деталей наплавкой твердыми сплавами 1.74 MB
При наплавке сильно изношенных деталей а также чугуна применяют комбинированный способ при котором сначала газопламенной или электродуговой наплавкой восстанавливают размеры детали после чего электродуговой наплавкой с применением угольного электрода наплавляют...
9457. ДЕФЕКТОСКОПИЯ ДЕТАЛЕЙ МАШИН 5.03 MB
Дефект - несоответствие изделия требованиям, определенным нормативной или технической документацией, что может быть причиной отказа. По причинам возникновения дефекты подразделяют на конструктивные, производственные и эксплуатационные.
9451. ОЧИСТКА МАШИН, УЗЛОВ И ДЕТАЛЕЙ 14.11 MB
Эксплуатационные загрязнения образуются на наружных и внутренних поверхностях машин узлов и деталей. Осадки образуются из продуктов сгорания и физикохимического трансформирования топлива и масла механических примесей продуктов износа деталей и воды. Опыт и исследования показывают что благодаря качественной очистке деталей в процессе их восстановления повышается ресурс отремонтированных машин и возрастает производительность труда.
14777. Выбор посадок и допусков для деталей машин и приборов 1.51 MB
Подшипники качения, работающие при самых разнообразных нагрузках и частотах вращения, должны обеспечивать точность и равномерность перемещений подвижных частей машин и приборов, а также обладать высокой долговечностью. Работоспособность подшипников качения в большой степени зависит от точности их изготовления и характера соединения с сопрягаемыми деталями.
11590. ТЕХНОЛОГИЯ ИЗГОТОВЛЕНИЯ ДЕТАЛЕЙ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ И ПОРОШКОВ 374.49 KB
Приготовление смеси и формообразование заготовок. Классификация и состав пластмасс Пластмассы – материалы получаемые на основе природных или синтетических полимеров смол которые на определенной стадии производства или переработки обладают высокой пластичностью. Пространственные структуры получаются в результате химической связи отдельных цепей полимеров при полимеризации. Полимеры с линейной структурой хорошо растворяются а с пространственной нерастворимы при частом расположении связей полимер практически нерастворим и неплавок.
  • Глава 2 технологические системы как экономические объекты
  • 2.1. Структура, свойства и технико-экономический уровень технологической системы
  • 2.2. Закономерности развития технологических систем
  • Раздел II анализ и экономическая оценка базовых технологий в отраслях, определяющих нтп Глава 3. Анализ и экономическая оценка базовых технологий в черной металлургии
  • Глава 4. Анализ и экономическая оценка базовых технологий в цветной металлургии
  • Глава 5. Анализ и экономическая оценка базовых технологий заготовительного производства
  • 5.1. Технологические процессы изготовления заготовок методами пластической деформации
  • 5.2. Технологические процессы получения заготовок методами литья
  • Глава 6. Анализ и экономическая оценка технологий механической обработки
  • 6.1. Анализ и экономическая оценка традиционных методов обработки резанием
  • 6.2. Технико-экономический анализ технологического процесса механообработки
  • Зависимость себестоимости заданной партии деталей от годового выпуска
  • 6.3. Электрофизические и электрохимические методы обработки металлов
  • Глава 7. Анализ и экономичекая оценка технологий сборочно производства
  • 7.1. Сущность процесса сборки. Технико-экономические показатели
  • 7.2. Методы соединения сборочных элементов. Сущность процессов сварки и их сравнительная оценка
  • Глава 8. Анализ и экономическая оценка базовых технологий в химической промышленности
  • 8.1. Технология производства неорганических кислот
  • 8.2. Сущность технологических процессов производства полимерных материалов
  • 8.3. Сущность и экономическая оценка технологических процессов переработки топлива
  • Виды топлива
  • Раздел III. Особенности развития технологических систем на уровне предприятия и отрасли Глава 9. Технологическое развитие на уровне предприятия
  • 9.1. Формирование и развитие технологических систем предприятия с дискретным производством
  • 9.2. Формирование и развитие технологических систем предприятий с непрерывным производством
  • 9.3. Автоматизация производства
  • 9.4. Отраслевые особенности технологического развития
  • Раздел IV.Технологический прогресс и экономическое развитие Глава 10. Сущность и основные направления ускорения нтп
  • Глава 11. Прогрессивные химико-технологические процессы
  • Глава 12. Прогрессивные виды технологий
  • Глава 13. Рыночные аспекты технологического развития
  • Раздел I. Технологические процессы и технологические системы как экономические объекты
  • Раздел II. Анализ и экономическая оценка базовых технологий в отраслях, определяющих нтп Главы 3 и 4. Анализ и экономическая оценки базовых технологий в черной и цветной металлургии
  • Глава 5. Анализ и экономическая оценка базовых технологий заготовительного производства
  • Глава 6. Анализ и экономическая оценка технологий механообработки
  • Глава 7. Анализ и экономическая оценка технологий сборочного производства
  • Глада 8. Анализ и экономическая оценка базовых технологий в химической промышленности
  • Раздел III. Особенности развития технологических"систем на уровне предприятия и отрасли
  • Раздел IV. Технологический гресс и экономическое развитие
  • Список рекомендуемой литературы
  • 8.3. Сущность и экономическая оценка технологических процессов переработки топлива

    Топливом называются твердые, жидкие и газообразные горючие вещества, являющиеся источником тепловой энер­гии и сырьем для химической промышленности.

    В результате химической переработки различных топлив получают огромное количество углеводородного сырья для производства пластических масс, химических волокон, синте­тических каучуков, лаков, красителей, растворителей и т.п. Так, например, при коксовании углей получают: бензол, то­луол, ксилолы, фенол, нафталин, антрацит, водород, метан, этилен и другие продукты. При добыче нефти из нее выделя­ют "попутные" газы, которые содержат метан, этан, пропан, бутан и другие углеводороды, используемые в химической промышленности.

    Источниками углеводородного сырья слу­жат также газы, полученные в результате переработки нефти (крекинге, пиролизе, риформинге). Эти газы содержат пре­дельные углеводороды - метан, этан, пропан, бутан и непре­дельные углеводороды - этилен, пропилен и др. Кроме того, при переработке нефти могут быть получены и ароматичес­кие углеводороды: бензол, толуол, ксилол и их смеси.

    Одним из важнейших видов химического сырья является природный газ, содержащий до 98% метана. Древесина и древесные от­ходы являются источником получения целлюлозы, этилового спирта, уксусной кислоты, фурфурола и ряда других продук­тов. Из сланцев и торфа производят горючие газы, сырье для производства масел, моторных топлив, высокомолекулярных соединений и т.п.

    Сжигание топлива обеспечивает энергией тепловые электростанции, промышленные предприятия, транспорт, быт. Значение топлива как химического сырья с каждым годом растет.

    Поскольку в мировом топливном балансе повышается роль твердого топлива, то во всем мире разрабатывают мето­ды получения из углей и сланцев дешевого жидкого и газооб­разного топлива, а также химического сырья.

    Развитие угольной и ядерной энергетики даст в будущем возможность прекратить потребление нефти и природного газа в энергетических целях и полностью передать эти виды топлива в сферу промышленности как сырье для химической про­мышленности, а также для синтеза белков и жиров.

    Все топлива по агрегатному состоянию делятся на твер­дые, жидкие и гааообразные; по происхождению - на есте­ственные и искусственные {См.табл.}.

    Искусственные топлива получают в результате переработ­ки естественных топлив.

    Виды топлива

    Агрегатное состояние топлива

    Т О П Л И В О

    естественное

    искусственное

    Древесина, торф, уголь, сланцы

    Кокс, полукокс, древесный уголь

    Бензин, керосин, лигроин, мазут

    Газообразное

    Природный газ, попутные газы

    Кокосовый газ, генераторные газы, газы нефтепереработки

    Твердые топлива состоят из горючей органической массы и негорючей, или минеральных примесей и баласта. Органи­ческая часть топлива состоит из углерода, водорода и кислоро­да. Помимо этого в ней могут содержаться азот и сера. Него­рючая часть топлива состоит из влаги и минеральных веществ. Важнейшим жидким топливом является нефть.

    Нефть содержит 80-85% углерода, 10-14% водорода и представ­ляет собой сложную смесь углеводородов. Помимо углеводо­родной части в нефти имеются небольшая неуглеводородная часть и минеральные примеси. Углеводородная часть нефти состоит из углеводородов трех рядов: парафинового (алканы), нафтенового (циклены) и роматического (арены).

    Газообразные парафиновые углеводороды от СН 4 до С 4 Н 10 находятся в нефти в растворенном состоянии и могут быть выделены из нее в виде попутных газов при добыче нефти. Жидкие парафиновые углеводороды от С 5 Н 34 до С 15 Н 34 составляют основную массу жидкой части нефти и жидких фракций, получаемых при ее переработке.

    Твердые парафиновые углеводороды от С 16 Н 34 и выше растворены в нефти и могут быть выделены из нее.

    Нафтеновые углеводороды представлены в нефти главным образом производными циклопентана и циклогексана.

    Ароматические углеводороды содержатся в нефти, в виде бензола, толуола, ксилола в небольших количествах.

    Неуглеводородная часть нефти состоит из сернистых, кис­лородных и азотистых соединений. Кислородные соединения - это нафтеновые кислоты, фенолы, смолистые вещества.

    Минеральные примеси - это механические примеси вода, минеральные соли, зола.

    Механические примеси - твердые частицы песка, глины, пород - выносятся из недр земли с потоком добываемой нефти. Вода в нефти присутствует в двух видах: свободная, отделяе­мая от нефти при отстаивании; в виде стойких эмульсий, кото­рые могут быть разрушены только специальными, методами.

    Минеральные соли, например, хлориды магния и каль­ция, растворены в воде, содержащейся в нефти.

    Зола составляет в нефти сотые, и даже тысячные доли процента.

    Твердые топлива перерабатывают следующими методами: пиролиз, или сухая перегонка, газификация и гидрирование.

    Пиролиз осуществляется при нагревании топлива без доступа воздуха. В результате протекают физические процес­сы, например испарение влаги, и химические процессы - превращение компонентов топлива с получением;ряда хими­ческих продуктов. Характер отдельных процессов, протекаю­щих при переработке различных топлив, различен.

    В основ­ном все они требуют подвода тепла извне. Нагрев реакцион­ных аппаратов производится горячими дымовыми газами, ко­торые передают тепло топливу через стенку аппарата или же при непосредственном соприкосновении с топливом.

    Газификация - процесс переработки топлива, при котором органическая часть его превращается а горючие газы в присутствии воздуха, водяного пара, кислорода и дру­гих газов. Этот процесс экзотермический. Температура гази­фикации составляет 900-1100 °С.

    Гидрирование - переработка твердого топлива, при которой под влиянием высокой температуры, при дейст­вии водорода и в присутствии катализаторов происходят хи­мические реакции, приводящие к образованию продуктов, более, богатых водородом, чем исходное сырье. Качество и количество продуктов, полученных при гидрировании, зави­сит от вида перерабатываемого топлива, от условий проведе­ния процесса и ряда других факторов.

    Методы переработки нефти различны и их можно разде­лить на две группы: физические и химические.

    Физические методы переработки основаны на использова­нии физических свойств фракций, входящих в состав нефти. Химических реакций при, этих методах переработки не проте­кает. Наиболее распространенным физическим методом пере­работки нефти является ее перегонка, при которой нефть разделяет на фракции.

    Химические методы переработки основаны на том, что под влиянием высоких температур и давления в присутствии катализаторов углеводороды, содержащиеся в нефти и неф­тепродуктах, претерпевают химические превращения, в ре­зультате которых образуются новые вещества.

    Термический крекинг- химический метод переработки нефти, суть которого заключается в расщеплении длинных молекул тяжелых углеводородов, входящих в высоко-кипящие фракции, на более короткие молекулы легких, низ­кокипящих продуктов Термический крекинг протекает при высоких температурах 450-500 °С и повышенном давлении. Термический крекинг, проводимый при температуре 670- 1200 °С и при атмосферном давлении называется пиролизом.

    Каталитическим называется крекинг с применением катализатора. Применение катализатора позво­ляет снизить температуру крекинга и не только увеличить количество получаемых продуктов, но и улучшить их качест­во. Катализаторами служат глины типа бокситов, а также синтетические алюмосиликаты, содержащие 10-25% А1 2 О 3 , SiO 2 . Температура крекинга - 450 - 500 °С. Процесс идет при повышенном давлении.

    Разновидностью каталитического крекинга является риформинг. Катализатором служит платина, нанесенная на окись алюминия.

    С помощью вышеописанных методов переработки естест­венных топлив получают искусственные твердые, жидкие и га­зообразные топлива, а также важнейшие виды нефтепродуктов.

    В результате коксования углей получают следующие про­дукты:

    1. Кокс - продукт темно-серого цвета, пористость ко­торого составляет 45-55%, содержит 97-98% углерода. В зависимости от назначения делится на:

    а) доменный кокс - крупный, более 40 мм в диаметре, прочный и пористый. По содержанию серы подразделяется на марки КД-I, КД-2, КД-3. Содержание серы не должно превышать 1,3-1,9%;

    б) литейный кокс (марки КЛ). Нижний предел крупности- 25 мм в диаметре. Содержание серы в нем допускается не выше 1,2-1,3%. Он имеет меньшую пористость и прочность по сравнению с доменным коксом;

    в) коксовый орешек (КО) применяется для производства ферросплавов. Размер 10 - 25 мм в диаметре. Коксик - фракция от 10 до 20 мм - применяется для газификации;

    г) коксовая мелочь (фракция диаметром менее 10 мм) применяется для агломерации;

    д) кокс, не пригодный для технических нужд из-за большого содержания золы и серы, а также вследствие низких механических свойств, используется в качестве топлива.

      Обратный коксовый газ содержит 60% водорода и 25% метана, остальное - азот, окись углерода, углекислый газ, кислород, непредельные углеводороды. При­меняется для подогрева воздушного дутья в доменных печах, для обогрева сталеплавильных, коксовых и других печей, а также служит сырьем для производства водорода и аммиака.

      Сырой бензол состоит из бензола, толуола, ксилола, сероуглерода, фенолов и др. Вещества, входящие в состав сырого бензола, широко используются в производстве полимеров, красителей, лекарственных препаратов, взрывча­тых веществ, ядохимикатов и др.

    4. Каменноугольная смола является сме­сью ароматических углеводородов. Ее используют для произ­водства красителей, химических волокон, пластических масс, в фармацевтической промышленности, а также для производства различных технических масел.

    Продукты прямой перегонки нефти можно разделить на три группы: топливные фракции, масляные дистилляты и гудрон. Наиболее ценной топливной фракцией являются бензины, в состав которых входят углеводороды с температурой кипе­ния 180-200 °С. Бензины применяются как компоненты авто­мобильных и авиационных бензинов и в качестве растворителей.

    Лигроины включают углеводороды с температурами кипения 105-220 °С. Легкий лигроин (с температурой кипе­ния 105 - 150 °С) используется как сырье для дальнейшей пере­работки на бензины, а тяжелый - как компонент реактивных топлив или растворителей для лакокрасочной промышленности.

    Керосины - углеводородная фракция с температурами кипения 140-330 °С; Применяются в качестве осветительного керосина, а также в качестве реактивных и дизельных топлив.

    Газойль - фракции с температурами кипения до 400 °С. Легкий газойль (соляр) является основой дизельных топлив. Тяжелые газойли являются сырьем для дальнейшей переработки.

    Maзут - фракция, включающая углеводороды, пара­фин, маслянистые и смолистые вещества с температурой ки­пения свыше 300 °С. Легкие мазуты применяются в качестве котельного топлива и топлива газовых турбин; тяжелые идут на дальнейшую переработку.

    Масляные дистилляты - фракции, состоящие из углеводородов С 20 –С 70 . Температуры кипения ве­ществ, входящих в их состав, составляют от 350 до 550 °С. Масляные дистилляты применяют для получения большого количества смазочных и специальных масел.

    Гудрон состоит из смолистых веществ, парафинов и некоторого количества тяжелых углеводородов циклического строения. Гудрон - полупродукт для получения битумов и кокса. Некоторые виды гудрона применяются в качестве мягчителей для резиновой промышленности.

    Продуктами крекинга являются: крекинг-бензины, кре­кинг-газы и крекинг-остаток.

    Крекинг-бензины применяют в качестве компонентов автомобильных бензинов. Крекинг-газы используются в каче­стве топлива и как сырье для синтеза органических соедине­ний. Крекинг-остаток является смесью смолистых и асфальтовых веществ с некоторым количеством непрореаги­ровавшего сырья. Применяется крекинг-остаток как котель­ное топливо и сырье для производства битума.

    К технико-экономическим показателям нефтеперерабаты­вающей и коксохимической промышленности относятся: про­изводительность и мощность оборудования, интенсивность процесса, производительность труда, себестоимость продук­ции, капитальные затраты. Коксохимическая и нефтеперера­батывающая отрасли промышленности характеризуются высокой материале- и энергоемкостью.

    Затраты на сырье при производстве нефтепродуктов составляют 50-75%. Следова­тельно, основным фактором, влияющим на себестоимость, является снижение затрат на тонну выпускаемой продукции, которое можно осуществить совершенствованием технологи­ческих процессов переработки нефти и кокса, применением каталитических процессов, более совершенных аппаратов и комплексной автоматизации, что ведет к сокращению капи­тальных затрат, затрат на энергию и пар, повышение произ­водительности

    error: Content is protected !!