Суть генной инженерии. Генетическая инженерия. Использование почвенных агробактерий

Генетическая (генная) инженерия – конструирование искусственным путем генетических структур и наследственно измененных организмов. Генетическая инженерия – раздел (прикладная ветвь) молекулярной генетики, связанный с целенаправленным созданием новых молекул ДНК, способных размножаться в клетке-хозяине. При этом происходит искусственное, целенаправленное изменение генотипа организма (микроорганизма) и формирование новых признаков и свойств. Генная инженерия занимается рашифровкой структуры генов, их синтезом и клонированием, вставкой выделенных из клеток живых организмов генов в клетки растений и животных с целью направленного изменения их генетических особенностей.

Хорошо разработанными методами генной инженерии являются трансгенез, микробиологический синтез и др.

Трансгенез – перенос генов от одного вида организмов в другой. Трансгенез осуществляется путем разрезания и сшивания участков ДНК при участии ферментов – рестриктаз и лигаз.

Этапы трансгенеза :

а) выделение генов (фрагментов ДНК) из клеток бактерий, растений или животных с помощью фермента рестриктазы ;

б) соединение (сшивание) генов (фрагментов ДНК) с плазмидой с помощью фермента лигазы ;

в) введение гибридной плазмидной ДНК, содержащей нужный ген в клетку хозяина;

г) копирование (клонирование) этого гена в клетке хозяина и обеспечение его работы по схеме: «Код ДНК – транскрипция – трансляция – белок»

Инструментами генной инженерии являются открытые в 1974 г ферменты – рестриктазы (рестрикционные эндонуклеазы). Рестриктазы узнают участки (сайты) ДНК, вносят разрезы в цепях ДНК. На концах каждого фрагмента образуются одноцепочечные хвосты, называемые «липкими концами», поскольку они могут, как бы слипаться между собой вследствие комплементарности.

Рестриктазы узнают в двухцепочечной ДНК определенную, только свою последовательность нуклеотидов ДНК. Затем рестриктаза прикрепляется к распознаваемому участку нуклеотидов и разрезает его в месте прикрепления. Чаще рестриктазы распознают в молекуле ДНК участки длиной в 4–6 пар нуклеотидов и разрезают обе цепи ДНК посередине этих участков или обычно со смещением. Примеры рестриктаз : рестриктаза Eco RI , которая узнает фрагмент ДНК из шести нуклеотидов ГААТТЦ (место разреза между нуклеотидами Г и А обеих цепей ДНК); рестриктаза Hind III распознает участок ААГЦТТ (место разреза между нуклеотидами А и А обеих цепей ДНК); рестриктаза Bam I распознает участок ГГАТЦЦ (место разреза между нуклеотидами Г и Г обеих цепей ДНК); рестриктаза Hae III распознает участок ГГЦЦ (место разреза между нуклеотидами Г и Ц обеих цепей ДНК); рестриктаза Hpa II распознает участок ЦЦГГ(место разреза между нуклеотидами Ц и Ц обеих цепей ДНК).

Далее для конструирования генетически измененного организма необходимо ввести нужный ген в клетку этого организма. Введение чужеродных генов в организм осуществляется с помощью плазмидного вектора . Вектором является плазмида маленькая кольцевая молекула ДНК, которую извлекают из цитоплазмы бактериальной клетки. Плазмиды – факторы наследственности, расположенные вне хромосом, представляющие собой внехромосомную ДНК .

Рис . 37.

А – Схема введения чужеродной ДНК в бактериальную плазмиду с использованием ферментов (рестрикционной эндонуклеазы и лигазы).

Б – Схема переноса гена человека, ответственного за синтез гормона инсулина и образование векторной ДНК.

Свойства плазмиды: 1) обладает способностью к автономной репликации; 2) содержит гены, кодирующие антибиотики; 3) способны встраиваться в хромосому клетки-реципиента; 4) распознает участки ДНК, которые могут разрезать ферменты - рестриктазы; 5) рестриктаза может разрезать плазмиду и переводить ее в линейное состояние. Эти свойства плазмиды исследователи используют для получения рекомбинантных (гибридных) ДНК.

Последовательность введения ДНК в плазмиду (плазмидный вектор) с помощью фермента рестриктазы (рис. 37 А):

1) рестрикция – разрезание молекулы ДНК рестриктазой, образование фрагментов ДНК и выделение необходимого гена ;

2) включение выделенного гена в плазмиду , т. е. получение рекомбинантной (гибридной) ДНК путем введения фрагмента чужеродной ДНК в плазмиду;

3) лигирование – сшивание ферментом лигазой плазмидного (векторного) и чужеродного фрагментов ДНК; при этом концы векторной и чужеродной ДНК (т. н. «клейкие концы») комплементарны друг другу;

4) трансформация – введение рекомбинантной плазмиды в геном другой клетки (клетки-реципиента), в частности, бактериальной клетки.

Следует отметить, что плазмиды проникают лишь в часть обработанных бактерий. Трансформированные бактерии вместе с плазмидами приобретают устойчивость к определенному антибиотику, что позволяет их отделить от нетрансформированных, погибающих на среде, содержащей антибиотик. Каждая из трансформированных бактерий, помещенная на питательную среду, размножается и образует колонию из многих тысяч потомков – клон.

5) скрининг – отбор среди трансформированных бактерий тех, которые содержат плазмиды с нужным геном.

Трансгенные животные и растения

Клонированные гены с помощью микроинъекции вводят в яйцеклетку млекопитающих или протопласты растений (изолированная клетка, лишенная клеточной стенки) и далее из них выращивают животных, или растения, в геноме которых действуют чужеродные гены. Растения и животные, геном которых изменен путем генноинженерных операций, получили название трансгенных организов (трансгенных растений и животных) , поскольку в нем содержатся чужеродные гены. Получены трансгенные мыши, кролики, свиньи, овцы. В их геноме работают гены бактерий, млекопитающих, человека. Получены трансгенные растения (кукуруза, перец, томаты, пшеница, рожь, бобовые, картофель и др.), содержащие гены неродственных видов. Трансгенные растения устойчивы к гербицидам, насекомым, неблагоприятным погным условиям и др. Постепенно решается проблема изменения наследственности многих сельскохозяйственных растений.

Генетическая карта хромосом. Генная терапия

Генетической картой хромосом называют схему взаимного расположения генов, находящихся в одной группе сцепления. Такие карты составляются для каждой пары гомологичных хромосом. На генетической карте указан порядок расположения генов в хромосоме и расстояния между ними (процент кроссинговера между определенными генами). Так создание новых штаммов микроорганизмов, способных синтезировать гормоны, белки, лекарственные препараты основывается на знании генетических карт микроорганизмов. Генетические карты человека необходимы для медицинской генетики. Знания о локализации гена в определенной хромосоме используются при диагностике ряда наследственных заболеваний, а также в генной терапии для исправления структуры и функции генов.

Генная терапия – замена дефектных генов на неповрежденные, или исправление их структуры.

Для борьбы с наследственными, онкологическими и возрастными заболеваниями разрабатываются методы генной терапии, безопасные для клеток человека. С использованием методов генной терапии можно заменять в организме дефектные гены, в которых произошли точковые мутации, на неповрежденные. В наше время ученые осваивают методы биобезопасности человека: внедрение нужных генов в клетки организма человека. Это позволит избавиться от многих наследственных заболеваний.

Микробиологический синтез

Методы генной инженерии позволили осуществить микробиологический синтез (рис. 37 Б). С помощью методов генной инжененрии микробиологи смогли получить штаммы бактерий, благодаря которым успешно осуществляется микробиологический синтез. Для этого производится отбор необходимых бактериальных клеток, не содержащих плазмид. Выделяются молекулы ДНК с заданной последовательностью нуклеотидов, определяющих развитие нужного признака. Плазмида с встроенным участком ДНК (геном) вводится в бактериальную клетку, в которой встроенный участок ДНК начинает работать (идут процессы репликации, транскрипции, трансляции), и в бактериальной клетке синтезируется нужный белок (интерферон, генферон, иммуноглобулин, инсулин, соматотропин и др.). В промышленных количествах получены гормоны (инсулин, соматотропин), многие аминокислоты, антибиотики, вакцины и др. Такие бактерии размножают в промышленных масшабах и производят необходимый белок.

С помощью генетических методов получен штамм микроорганизма Pseudomonas denitrificans, который производит в десятки раз больше витамина C, витаминов группы B, чем исходная форма; новый штамм бактерии микрококкус глутамикус выделяет в сотни раз больше аминокислоты лизина, чем исходная (дикая) культура лизинобразующей бактерии.

Клеточная инженерия

Клеточная инженерия – культивирование отдельных клеток или тканей на специальных искусственных средах, разработка методов создания клеток нового типа путем их гибридизации, замены хромосом и выращивание из них гибридов.

1. Метод культуры тканей

Метод заключается в культивировании изолированных клеток или кусочков тканей на искусственной питательной среде в соответствующих микроклиматических условиях. В результате культивирования растительные клетки или кусочки ткани регенерируют в целое растение. Путем микроклонального размножения отдельных клеток, или кусочков тканей (чаще верхушечной меристемы стебля или корня) можно получить множество полезных растений. Микроклиматические условия и питательные среды для регенерации декоративных, культурных, лекарственных растений подбираются экспериментально. Культура тканей также используется для получения диплоидных растений после обработки исходных гаплоидных форм колхицином.

2. Соматическая гибридизация

Соматическая гибридизация включает получение гибридных клеток, а из них – новых форм; искусственное оплодотворение яйцеклеток.

Получение новых гибридных растений путемслияния протопластов (ядро и цитоплазма) различных клеток в культуре тканей. Для слияния протопластов с помощью ферментов разрушают стенку растительной клетки и получают изолированный протопласт. При культивировании таких протопластов разных видов растений осуществляется их слияние и образование форм с новыми полезными признаками. Искусственное оплодотворение яйцеклеток осуществляют посредством метода экстракорпорального оплодотворения (ЭКО), позволяющего произвести оплодотворение яйцеклеток в пробирке с последующей имплантацией эмбриона на ранней стадии развития, и преодолеть некоторые формы бесплодия у человека.

3. Хромосомная инженерия – замена отдельных хромосом в клетках растений или добавление новых. У диплоидов имеются пары гомологичных хромосом, и такие организмы называются дисомики. Если в одной какой-либо паре оставить одну хромосому, то формируется моносомик. Если добавить в какую-либо пару третью гомологичную хромосому, то формируется трисомик и т. д. Возможна замена отдельных хромосом одного вида на хромосомы другого вида. Полученные формы называются замещенными .

Сложно найти в современном мире человека, который ничего не слышал бы об успехах генной инженерии.

Сегодня она является одним из наиболее перспективных путей развития биотехнологий, совершенствования сельскохозяйственного производства, медицины и ряда других отраслей.

Что такое генная инженерия?

Как известно, наследственные признаки любого живого существа записаны в каждой клетке организма в виде совокупности генов – элементов сложных белковых молекул . Вводя в геном живого существа чужеродный ген, можно изменить свойства получаемого организма, причём в нужную сторону: сделать сельскохозяйственную культуру более устойчивой к морозу и болезням, придать растению новые свойства и т.д.

Организмы, полученные в результате такой переделки, называются генно-модифицированными, или трансгенными, а научная дисциплина, занимающаяся исследованием модификаций и разработкой трансгенных технологий – генетической или генной инженерией.

Объекты генной инженерии

Наиболее часто объектами для исследования генной инженерии становятся микроорганизмы, клетки растений и низших животных, однако ведутся исследования и на клетках млекопитающих, и даже на клетках человеческого организма. Как правило, непосредственным объектом исследования является молекула ДНК, очищенная от прочих клеточных веществ. При помощи энзимов ДНК расщепляется на отдельные отрезки, причём важно уметь распознавать и выделять нужный отрезок, переносить его при помощи энзимов и встраивать в структуру другой ДНК.

Современные методики уже позволяют достаточно свободно манипулировать отрезками генома, размножать нужный участок наследственной цепи и вставлять его на место другого нуклеотида в ДНК реципиента. Накоплен достаточно большой опыт и собрана немалая информация по закономерностям строения наследственных механизмов. Как правило, преобразованиям подвергаются сельскохозяйственные растения, что уже позволило существенно повысить результативность основных продовольственных культур.

Для чего нужна генная инженерия?

К середине ХХ века традиционные методы перестали устраивать учёных, так как это направление обладает рядом серьёзных ограничений:

  • невозможно скрещивать неродственные виды живых существ;
  • процесс рекомбинации генетических признаков остаётся неуправляемым, и необходимые качества у потомства появляются в результате случайных комбинаций, при этом очень большой процент потомства признаётся неудачным и отбрасывается в ходе селекции;
  • точно задать нужные качества при скрещивании невозможно;
  • селекционный процесс занимает годы и даже десятилетия.



Естественный механизм сохранения наследственных признаков является чрезвычайно стойким, и даже появление потомства с нужными качествами не даёт гарантии сохранения этих признаков в последующих поколениях.

Генная инженерия позволяет преодолеть все вышеперечисленные затруднения. С помощью трансгенных технологий можно создавать организмы с заданными свойствами, заменяя отдельные участки генома другими, взятыми у живых существ, принадлежащих к другим видам. При этом сроки создания новых организмов существенно сокращаются. Необязательно закреплять нужные признаки, делая их наследуемыми, так как всегда есть возможность генетически модифицировать следующие партии, поставив процесс буквально на поток.

Этапы создания трансгенного организма

  1. Выделение изолированного гена с нужными свойствами. Сегодня для этого существуют достаточно надёжные технологии, есть даже специально подготовленные библиотеки генов.
  2. Ввод гена в вектор для переноса. Для этого создаётся специальная конструкция – трансген, с одним или несколькими отрезками ДНК и регуляторными элементами, который встраивается в геном вектора и подвергается клонированию при помощи лигаз и рестриктаз. В качестве вектора обычно используются кольцеобразные бактериальные ДНК – плазмиды.
  3. Встраивание вектора в организм реципиента. Этот процесс скопирован с аналогичного природного процесса встраивания ДНК вируса или бактерии в клетки носителя и действует таким же образом.
  4. Молекулярное клонирование. При этом клетка, подвергшаяся модификации, успешно делится, производя множество новых дочерних клеток, которые содержат изменённый геном и синтезируют белковые молекулы с заданными свойствами.
  5. Отбор ГМО. Последний этап ничем не отличается от обычной селекционной работы.

Безопасна ли генная инженерия?

Вопрос, насколько безопасны трансгенные технологии, периодически поднимается как в научной среде, так и в СМИ, далёких от науки. Однозначного ответа на него нет до сих пор.

Во-первых, генная инженерия остаётся ещё достаточно новым направлением биотехнологий, и статистика, позволяющая делать объективные выводы об этой проблеме, пока что не успела накопиться.

Во-вторых, огромные вложения в генную инженерию со стороны транснациональных корпораций, занимающихся производством продуктов питания, могут служить дополнительной причиной отсутствия серьёзных исследований.


Впрочем, в законодательствах многих стран появились нормы, обязывающие производителей указывать наличие продуктов из ГМО на упаковке товаров пищевой группы. В любом случае, генная инженерия уже продемонстрировала высокую результативность своих технологий, а её дальнейшее развитие обещает людям ещё больше успехов и достижений.

И БИОТЕХНОЛОГИЯ

«Познание определяется тем,

что утверждается нами

как Истина»

П. А. ФЛОРЕНСКИЙ.

Современная биология коренным образом отличается от традиционной биологии не только большей глубиной разработки познавательных идей, но и более тесной связью с жизнью общества, с практикой. Можно сказать, что в наше время биология стала средством преобразования живого мира с целью удовлетворения материальных потребностей общества. Это заключение иллюстрируется прежде всего тесной связью биологии с биотехнологией, которая стала важнейшей областью материального производства, равноправным партнером механической и химической технологий, созданных человеком ранее. Чем же объясняется взлет биотехнологии?

С момента своего возникновения биология и биотехнология всегда развивались совместно, причем с самого начала биология была научной основой биотехнологии. Однако длительное время недостаток собственных данных не позволял биологии оказывать очень большое влияние на биотехнологию. Положение резко изменилось с созданием во второй половине XX в. методологии генетической инженерии, под которой понимают генетическое манипулирование с целью "конструкции новых и реконструкции существующих генотипов. Являясь по своей природе методическим достижением, генетическая инженерия не привела к ломке сложившихся представлений о биологических явлениях, не затронула основных положений биологии подобно тому, как радиоастрономия не поколебала основных положений астрофизики, установление «механического эквивалента тепла» не привело к изменению законов теплопроводности, а доказательство атомистической теории вещества не изменило соотношений термодинамики, гидродинамики и теории упругости.

Генетическая инженерия открыла новую эру в биологии по той причине, что появились новые возможности для проникновения в глубь биологических явлений с целью дальнейшей характеристики форм существования живой материи, с целью более эффективного изучения структуры и функции генов на молекулярном уровне, понимания тонких механизмов работы генетического аппарата. Успехи генетической инженерии означают переворот в современном естествознании. Они определяют критерии ценности современных представлений о структурно-функциональных особенностях молекулярного и клеточного уровней живой материи. Современные данные о живом имеют гигантское познавательное значение, ибо обеспечивают понимание одной из важнейших сторон органического мира и тем самым вносят неоценимый вклад в создание научной картины мира. Таким образом, резко расширив свою познавательную базу, биология через генетическую инженерию оказала также ведущее влияние на подъем биотехнологии.

Генетическая инженерия создает заделы на пути познания способов и путей «конструирования» новых организмов или улучшения существующих организмов, придавая им большую хозяйственную ценность, большую способность резкого увеличения продуктивности биотехнологических процессов.

В рамках генетической инженерии различают генную инженерию и клеточную инженерию. Под генной инженерией понимают манипуляции с целью создания рекомбинантных молекул ДНК. Часто эту методологию называют молекулярным клонированием, клонированием генов, технологией рекомбинантных ДНК или просто генетическими манипуляциями. Важно подчеркнуть, что объектом генной инженерии являются молекулы ДНК, отдельные гены. Напротив, под клеточной инженерией понимают генетические манипуляции с изолированными отдельными клетками или группами клеток растений и животных.

Глава XIX

ГЕННАЯ ИНЖЕНЕРИЯ

Генную инженерию составляет совокупность различных экспериментальных приемов (методик), обеспечивающих конструкцию (реконструкцию) и клонирование молекул ДНК (генов) с заданными целями.

Методы генной инженерии используют в определенной последовательности (рис. 221), причем различают несколько стадий в выполнении типичного генно-инженерного эксперимента, направленного на клонирование какого-либо гена, а именно:

1. Выделение ДНК из клеток интересующего организма (исходного) и выделение ДНК-вектора.

2. Разрезание (рестрикция) ДНК исходного организма на фрагменты, содержащие интересующие гены, с помощью одного из ферментов-рестриктаз и выделение этих генов из образованной рестрикционной смеси. Одновременно разрезают (рестрикциируют) векторную ДНК, превращая ее из кольцевой структуры в линейную.

3. Смыкание интересующего сегмента ДНК (гена) с ДНК вектора с целью получения гибридных молекул ДНК.

4. Введение гибридных молекул ДНК путем трансформации в какой-либо другой организм, например, в Е. coli или в соматические клетки.

5. Высев бактерий, в которые вводили гибридные молекулы ДНК, на питательные среды, позволяющие рост только клеток, содержащих гибридные молекулы ДНК.

6. Идентификация колоний, состоящих из бактерий, содержащих гибридные молекулы ДНК.

7. Выделение клонированной ДНК (клонированных генов) и ее характеристика, включая секвенирование азотистых оснований в клонированном фрагменте ДНК.

ДНК (исходная и векторная), ферменты, клетки, в которых клонируют ДНК - все это называют «инструментами» генной инженерии.

Выделение ДНК

Рассмотрим методику выделения ДНК на примере ДНК плаз-мид. ДНК из плазмидосодержащих бактериальных клеток выделяют с помощью традиционной техники, заключающейся в получении клеточных экстрактов в присутствии детергентов и последующем удалении из экстрактов белков фенольной экстракцией (рис. 222). Полная очистка плазмидной ДНК от белков, РНК и других соединений проводится в несколько стадий. После того как клетки разрушены, например, с помощью лизоцима (растворены их стенки), к экстракту добавляют детергент, чтобы растворить мембраны и инактивировать некоторые белки. Большинство хромосомной ДНК удаляют из получаемых препаратов обычным центрифугированием.

Часто для полной очистки используют хроматографию. Если требуется очень тщательная очистка, используют высокоскоростное центрифугирование в градиенте плотности CsCI с использованием этидия бромида. Оставшаяся хромосомная ДНК будет фрагментирована в линейную, тогда как плазмидная ДНК останется ковалентно закрытой. Поскольку этидий бромид менее плотен, чем ДНК, то при ультрацентрифугировании в центрифужной пробирке будет «выкручиваться» два кольца - плазмидная ДНК и хромосомная ДНК (рис. 223). Плазмидную ДНК отбирают для дальнейшей работы, хромосомную ДНК выбрасывают.

Генная инженерия - это метод биотехнологии, который занимается исследованиями по перестройке генотипов. Генотип является не просто механическая сумма генов, а сложная, сложившаяся в процессе эволюции организмов система. Генная инженерия позволяет путем операций в пробирке переносить генетическую информацию из одного организма в другой. Перенос генов дает возможность преодолевать межвидовые барьеры и передавать отдельные наследственные признаки одних организмов другим.

Носителями материальных основ генов служат хромосомы, в состав которых входят ДНК и белки. Но гены образования не химические, а функциональные. С функциональной точки зрения ДНК состоит из множества блоков, хранящих определенный объем информации - генов. В основе действия гена лежат его способность через посредство РНК определять синтез белков. В молекуле ДНК как бы записана информация, определяющая химическую структуру белковых молекул. Ген - участок молекулы ДНК, в котором находится информация о первичной структуре какого-либо одного белка (один ген - один белок). Поскольку в организмах присутствуют десятки тысяч белков, существуют и десятки тысяч генов. Совокупность всех генов клетки составляет ее геном. Все клетки организма содержат одинаковый набор генов, но в каждой из них реализуется различная часть хранимой информации. Поэтому, например, нервные клетки и по структурно-функциональным, и по биологическим особенностям отличаются от клеток печени.

Перестройка генотипов, при выполнении задач генной инженерии, представляет собой качественные изменения генов не связанные с видимыми в микроскопе изменениями строения хромосом. Изменения генов прежде всего связано с преобразованием химической структуры ДНК. Информация о структуре белка, записанная в виде последовательности нуклеотидов, реализуется в виде последовательности аминокислот в синтезируемой молекуле белка. Изменение последовательности нуклеотидов в хромосомной ДНК, выпадение одних и включение других нуклеотидов меняют состав образующихся на ДНК молекулы РНК, а это, в свою очередь, обуславливает новую последовательность аминокислот при синтезе. В результате в клетке начинает синтезироваться новый белок, что приводит к появлению у организма новых свойств. Сущность методов генной инженерии заключается в том, что в генотип организма встраиваются или исключаются из него отдельные гены или группы генов. В результате встраивания в генотип ранее отсутствующего гена можно заставить клетку синтезировать белки, которые ранее она не синтезировала.

Наиболее распространенным методом генной инженерии является метод получения рекомбинантных, т.е. содержащих чужеродный ген, плазмид. Плазмиды представляют собой кольцевые двухцепочные молекулы ДНК, состоящие из нескольких тысяч пар нуклеотидов. Этот процесс состоит из нескольких этапов.

1. Рестрикция - разрезание ДНК, например, человека на фрагменты.

2. Лигирование - фрагмент с нужным геном включают в плазмиды и сшивают их.

3. Трансформация -введение рекомбинантных плазмид в бактериальные клетки. Трансформированные бактерии при этом приобретают определенные свойства. Каждая из трансформированных бактерий размножается и образует колонию из многих тысяч потомков - клон.

4. Скрининг - отбор среди клонов трансформированных бактерий тех, которые плазмиды, несущие нужный ген человека.

Весь этот процесс называется клонированием. С помощью клонирования можно получить более миллиона копий любого фрагмента ДНК человека или другого организма. Если клонированный фрагмент кодирует белок, то экспериментально можно изучить механизм, регулирующий транскрипцию этого гена, а также наработать этот белок в нужном количестве. Кроме того, клонированный фрагмент ДНК одного организма можно ввести в клетки другого организма. Этим можно добиться, например, высокие и устойчивые урожаи благодаря введенному гену, обеспечивающему устойчивость к ряду болезней. Если ввести в генотип почвенных бактерий гены других бактерий, обладающих способностью связывать атмосферный азот, то почвенные бактерии смогут переводить этот азот в связанный азот почвы. Введя в генотип бактерии кишечной палочки ген из генотипа человека, контролирующий синтез инсулина, ученые добились получения инсулина при посредстве такой кишечной палочки. При дальнейшем развитии науки станет возможным введение в зародыш человека недостающих генов, и тем самым позволит избежать генетических болезней.

Эксперименты по клонированию животных ведутся давно. Достаточно убрать из яйцеклетки ядро, имплантировать в нее ядро другой клетки, взятой из эмбриональной ткани, и вырастить ее - либо в пробирке, либо в чреве приемной матери. Клонированная овечка Доли была создана нетрадиционным путем. Ядро из клетки вымени 6-летней взрослой овцы одной породы пересадили в безъядерное яйцо овцы другой породы. Развивающийся зародыш поместили в овцу третей породы. Так как родившаяся овечка получила все гены от первой овцы - донора, то является ее точной генетической копией. Этот эксперимент открывает массу новых возможностей для клонирования элитных пород, взамен многолетней селекции.

Ученые Техасского университета смогли продлить жизнь нескольких типов человеческих клеток. Обычно клетка умирает, пережив около 7-10 процессов деления, а они добились сто делений клетки. Старение, по мнению ученых, происходит из-за того, что клетки при каждом делении теряют теломеры, молекулярные структуры, которые располагаются на концах всех хромосом. Ученые имплантировали в клетки открытый ими ген, отвечающий за выработку теломеразы и тем самым сделали их бессмертными. Возможно это будущий путь к бессмертию.

Еще с 80-х годов появились программы по изучению генома человека. В процессе выполнения этих программ уже прочитано около 5 тысяч генов (полный геном человека содержит 50-100 тысяч). Обнаружен ряд новых генов человека. Генная инженерия приобретает все большее значение в генотерапии. Потому, что многие болезни заложены на генетическом уровне. Именно в геноме заложена предрасположенность ко многим болезням или стойкость к ним. Многие ученые считают, что в XXI веке будет функционировать геномная медицина и генная инженерия.

Экономическое значение

Генная инженерия служит для получения желаемых качеств изменяемого или генетически модифицированного организма . В отличие от традиционной селекции , в ходе которой генотип подвергается изменениям лишь косвенно, генная инженерия позволяет непосредственно вмешиваться в генетический аппарат, применяя технику молекулярного клонирования . Примерами применения генной инженерии являются получение новых генетически модифицированных сортов зерновых культур, производство человеческого инсулина путём использования генномодифицированных бактерий, производство эритропоэтина в культуре клеток или новых пород экспериментальных мышей для научных исследований.

Основой микробиологической, биосинтетической промышленности является бактериальная клетка. Необходимые для промышленного производства клетки подбираются по определённым признакам, самый главный из которых - способность производить, синтезировать, при этом в максимально возможных количествах, определённое соединение - аминокислоту или антибиотик, стероидный гормон или органическую кислоту. Иногда надо иметь микроорганизм, способный, например, использовать в качестве «пищи» нефть или сточные воды и перерабатывать их в биомассу или даже вполне пригодный для кормовых добавок белок. Иногда нужны организмы, способные развиваться при повышенных температурах или в присутствии веществ, безусловно смертельных для других видов микроорганизмов.

Задача получения таких промышленных штаммов очень важна, для их видоизменения и отбора разработаны многочисленные приёмы активного воздействия на клетку - от обработки сильнодействующими ядами, до радиоактивного облучения. Цель этих приёмов одна - добиться изменения наследственного, генетического аппарата клетки. Их результат - получение многочисленных микробов-мутантов, из сотен и тысяч которых учёные потом стараются отобрать наиболее подходящие для той или иной цели. Создание приёмов химического или радиационного мутагенеза было выдающимся достижением биологии и широко применяется в современной биотехнологии .

Но их возможности ограничиваются природой самих микроорганизмов. Они не способны синтезировать ряд ценных веществ, которые накапливаются в растениях, прежде всего в лекарственных и эфирномасличных. Не могут синтезировать вещества, очень важные для жизнедеятельности животных и человека, ряд ферментов, пептидные гормоны, иммунные белки, интерфероны да и многие более просто устроенные соединения, которые синтезируются в организмах животных и человека. Разумеется, возможности микроорганизмов далеко не исчерпаны. Из всего изобилия микроорганизмов использована наукой, и особенно промышленностью, лишь ничтожная доля. Для целей селекции микроорганизмов большой интерес представляют, например, бактерии анаэробы , способные жить в отсутствие кислорода, фототрофы, использующие энергию света подобно растениям, хемоавтотрофы, термофильные бактерии, способные жить при температуре, как обнаружилось недавно, около 110 °C, и др.

И всё же ограниченность «природного материала» очевидна. Обойти ограничения пытались и пытаются с помощью культур клеток и тканей растений и животных. Это очень важный и перспективный путь, который также реализуется в биотехнологии . За последние несколько десятилетий учёные создали методы, благодаря которым отдельные клетки тканей растения или животного можно заставить расти и размножаться отдельно от организма, как клетки бактерий. Это было важное достижение - полученные культуры клеток используют для экспериментов и для промышленного получения некоторых веществ, которые с помощью бактериальных культур получить невозможно.

История развития и достигнутый уровень технологии

Во второй половине XX века было сделано несколько важных открытий и изобретений, лежащих в основе генной инженерии . Успешно завершились многолетние попытки «прочитать» ту биологическую информацию, которая «записана» в генах. Эта работа была начата английским учёным Ф. Сенгером и американским учёным У. Гилбертом (Нобелевская премия по химии г.). Как известно, в генах содержится информация-инструкция для синтеза в организме молекул РНК и белков, в том числе ферментов. Чтобы заставить клетку синтезировать новые, необычные для неё вещества, надо чтобы в ней синтезировались соответствующие наборы ферментов. А для этого необходимо или целенаправленно изменить находящиеся в ней гены, или ввести в неё новые, ранее отсутствовавшие гены. Изменения генов в живых клетках - это мутации. Они происходят под действием, например, мутагенов - химических ядов или излучений. Но такие изменения нельзя контролировать или направлять. Поэтому учёные сосредоточили усилия на попытках разработать методы введения в клетку новых, совершенно определённых генов, нужных человеку.

Основные этапы решения генноинженерной задачи следующие:

1. Получение изолированного гена. 2. Введение гена в вектор для переноса в организм. 3. Перенос вектора с геном в модифицируемый организм. 4. Преобразование клеток организма. 5. Отбор генетически модифицированных организмов (ГМО ) и устранение тех, которые не были успешно модифицированы.

Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100-120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК , в том числе мутантной, полимеразную цепную реакцию . Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК , в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты - олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК . Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага , в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК .

Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации . В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК , плазмидами . Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.

Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция .

Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование , то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом , среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.

Применение в научных исследованиях

Хотя и в небольшом масштабе, генная инженерия уже используется для того, чтобы дать шанс забеременеть женщинам с некоторыми разновидностями бесплодия. Для этого используют яйцеклетки здоровой женщины. Ребёнок в результате наследует генотип от одного отца и двух матерей.

Однако возможность внесения более значительных изменений в геном человека сталкивается с рядом серьёзных этических проблем

error: Content is protected !!