Углекислый газ относится к парниковым газам. Источники выбросов парниковых газов. Свойства парниковых газов

Вывоз, переработка и утилизация отходов с 1 по 5 класс опасности

Работаем со всеми регионами России. Действующая лицензия. Полный комплект закрывающих документов. Индивидуальный подход к клиенту и гибкая ценовая политика.

С помощью данной формы вы можете оставить заявку на оказание услуг, запросить коммерческое предложение или получить бесплатную консультацию наших специалистов.

Отправить

В современном быстроразвивающемся мире предпринимаются новые технологические попытки борьбы с загрязнением и мусором. Но одна проблема все еще остается нерешенной — это парниковые газы. И хотя многие из нас наслышаны о парниковом эффекте, мы все еще недостаточно осознаем, какие последствия он несет.

Понятие

Парниковые газы присутствуют в атмосферах всех планет. Их образование является закономерным процессом, связанным с особенностями свойств тепловой энергии. До возникновения первых живых существ они активно вырабатывались в естественных условиях. Газы существуют на планете с тех пор, как появились первые зачатки атмосферы, и именно благодаря им сформировались условия для жизни.

Определенная концентрация природного газа позволила установиться адекватной для всех живых организмов температуре. Получается, что их образование изначально связано исключительно с естественными природными явлениями и процессами. Как же это происходило?

Все началось с момента, когда солнечные лучи начали прогревать поверхность планеты. Углекислый газ и другие составляющие, попавшие в атмосферу, сдерживали часть этой энергии, не давая ей полностью отразиться от поверхности и выйти в космическое пространство. Эффект нагревания, производимый за счет подобного явления, напоминал то, что происходит в теплице садовода.

Позже к источникам природного газа присоединились вулканы с их активной деятельностью. И уже после возникновения на Земле зеленых растений начали формироваться условия для жизни.

До определенного момента состояние атмосферы продолжало быть идеальным: животный и растительный мир стремительно развивались. А миллионы лет эволюции, в конечном счете, привели к появлению Человека Разумного — то ли венца ее творения, то ли проклятия.

Развитие производства, использование топлива, разработки в сельском хозяйстве и химической промышленности привели к тому, что выбросы парниковых газов увеличились, дестабилизировав состояние атмосферы. Перед человечеством встал серьезный вопрос, касающийся дальнейшего благосостояние планеты: парниковый эффект, вызванный увеличением уровня парниковых газов.

Состав

Из самого термина ясно, что в парниковый газ включает в себя не один химический компонент, и свое воздействие они производят в комплексе. В 1997 году ООН было принято соглашение — Киотский протокол, получивший свое наименование по названию города, в котором происходило совещание. Помимо основного требования, предъявленного к большинству стран мира, которое подразумевает постепенное снижение уровня выбросов в атмосферу парниковых газов, в документе также принят перечень опасных веществ. Так, к парниковым газам относятся:

  • углекислый газ
  • метан
  • закись азота
  • водяной пар
  • фреоны
  • перфторуглероды
  • гексафторид серы

Основная «четверка»

Хотя все составляющие вещества, включенные в список, оказывают серьезное воздействие, основными парниковыми газами являются углекислый газ, метан, закись азота и озон.

Углекислый газ относится к числу самых распространенных газов в атмосфере. Его доля составляет примерно 64%, при этом он оказывает наиболее сильное влияние на климат. Изначально источником выступали вулканы: на определенном этапе развития планеты вулканическая активность была столь высока, что Мировой океан буквально кипел.

Сегодня на повышения показателей СО 2 в атмосфере в значительной мере влияет деятельность человека. Выделение парниковых газов от сжигания различных топливных материалов, увеличения объема выхлопов и вырубка лесов — эти факторы ежегодно умножают объемы газа.

Парниковый эффект, который оказывает метан, в 25 раз сильнее и опаснее, чем углекислота. Повышению его уровня способствует развитие сельского хозяйства, так как его главные источники — продукты жизнедеятельности скота, процессы горения и выращивание риса. Сегодня показатели считаются рекордными, хотя скорость их роста уменьшилась.

Закись азота занимает одно из ведущих мест по объему в атмосфере. Основной источник — производство и применение веществ, относящихся к различным минеральным удобрениям. Существует естественный источник природного газа — тропические джунгли. Согласно подсчетам, в таких районах вырабатывается около 70% вещества.

Озон, который никак не связан со спасительным озоновым слоем, располагается в нижних слоях тропосферы. Он способен не только усиливать парниковый эффект, но и вредит зеленым насаждениям, когда его концентрация вблизи Земли оказывается очень высокой. Основные источники озона:

  • промышленные выбросы
  • выхлопы транспорта
  • различные химические растворители

Не менее опасны

Фреон, гексафторид, перфторуглероды и водяные пары в числе газов также считаются опасными во многом потому, что все они, за исключением водяных паров, относятся к искусственным веществам. Они входят в обязательный расчет парниковых газов, который позволяет оценивать ежегодный урон со стороны предприятий.

  • Фреоны включают в себя ряд веществ, и, несмотря на то, что их объем меньше, чем CO 2 , эффект может быть выше в 1300-8500 раз! В атмосферу они попадают за счет использования аэрозолей, холодильных установок.
  • Перфторуглероды являются побочным эффектом производства алюминия, электротехники и растворителей.
  • Гексафторид серы применяется в сфере пожаротушения, а также в промышленности (в электронной и металлургической). Этот парниковый газ на протяжении долгого времени не распадается в атмосфере, что делает его особенно опасным. Как и в случае с фреонами, два этих вещества отличаются сильнейшей парниковой активностью.
  • Особое место среди парниковых газов занимают водяные пары. Хотя их формирование относится к исключительно естественным процессам, на их долю приходится значительный процент влияния на развитие парникового эффекта. На его примере можно оценить всю масштабность проблемы: концентрация парниковых газов приводит к повышению температуры на планете, что в свою очередь увеличивает объем водяных паров, усиливающих парниковый эффект. Получается страшная замкнутая система, выход из которой необходимо искать как можно скорее, пока изменения на Земле не приобрели необратимый характер.

Решение проблемы

Парниковый эффект приведет к многочисленным неприятным последствиям, которые отразятся буквально на всем живом. Естественно, что эти глобальные перемены окажут сильнейшее влияние на жизнь человека:

  1. Повышение температуры приведет к повышению влажности воздуха во влажных районах, в то время как засушливые территории окажутся в еще более тяжелом положении.
  2. Повышение уровня Мирового океана станет причиной затопления прибрежных территорий и островных государств.
  3. Около 40% видов животных и растений исчезнут с лица Земли из-за изменений условий обитания.
  4. Серьезный удар грозит и сельскому хозяйству, что приведет к мировому голоду.
  5. Таяние ледников и повышение температуры приведут к иссушению подземных источников и, как следствие, к нехватке питьевой воды.

Остановить губительное воздействие парниковых газов необходимо в ближайшие десятилетия, в противном случае последствия станут необратимыми. На государственном уровне основные действия связаны с установлением единых стандартов качества и объемов выбросов парниковых газов. Так, все предприятия и организации обязаны регулярно оценивать ущерб, который наносится окружающей среде их деятельностью, проводя расчет выбросов. Его стандартная формула включает себя вычисления, связанные с определением объемов каждого парникового газа с последующим его пересчетом в эквиваленте углекислого газа.

От государств требуется усиленно способствовать технологическому совершенствованию производств, которые приведут к уменьшению уровня вредных газов. Для организаций, не соблюдающих экологические нормы ведения деятельности, должны приниматься жесткие штрафные санкции, в то время как предприятия, стремящиеся работать по новым экологическим стандартам, должны получать сильную поддержку и поощрения.

Борьба с транспортными выхлопами, активное развитие видов сельского хозяйства, не приносящих вреда окружающей среде, а также поиск и разработка новых безопасных источников энергии — все эти меры приведут к сокращению уровня и последствий ПГ.

Следствие

Современный век, отмеченный высокими технологиями, развитыми способами производства и колоссальными открытиями, ознаменован и тем, что вопросы восстановления экологического состояния планеты становятся все более актуальными. Проблемы экологии решаются не только по инициативе активистов, но и на государственном уровне. Разрабатываются программы, нацеленные на стабилизацию экологического равновесия в отдельных регионах и странах.

Парниковые газы являются закономерным результатом развития планеты. Но человеческая деятельность, неосмотрительная по отношению к природе, привела к серьезному дисбалансу этих веществ в атмосфере. Результатом стал парниковый эффект — одна из главных экологических проблем современности. Для борьбы с ним предпринимаются масштабные действия на мировом уровне.

Важно понимать, что свой вклад самыми простыми действиями могут внести все люди: разумное использование автотранспорта, воды и электричества, поддержка энергосберегающих технологий и чистоты территории — все это снижает негативное влияние газов. Ответственное отношение каждого человека к окружающей среде становится маленьким, но важным шагом к спасению нашей планеты.

Парниковые газы, которые находятся в атмосферах разных планет, приводят к образованию довольно опасного явления. Речь идет именно о парниковом эффекте. На самом деле ситуацию можно назвать парадоксальной. Ведь именно парниковые газы согрели нашу планету в результате чего на ней появились первые живые организмы. Но с другой стороны, сегодня эти газы вызывают множество проблем, связанных с экологией.

На протяжении многих миллионов лет Солнце нагревало планету Земля, медленно превращая её саму в источник энергии. Часть этого тепла уходила в космическое пространство, а часть отражалась газами в атмосфере и нагревала воздух, вокруг планеты. Аналогичный процесс, похожий на сохранение тепла под прозрачной плёнкой в теплице, учёные назвали «парниковым эффектом». А газы, приводящие к возникновению такого явления, назвали парниковыми.
В эпоху формирования земного климата, парниковый эффект возникал вследствие активной вулканической деятельности. Колоссальные объемы выбросов водяного пара и углекислого газа задерживались в атмосфере. Таким образом, наблюдался гиперпарниковый эффект, который нагрел воды Мирового океана практически до точки кипения. И лишь зеленая растительность, питающаяся углекислым газом атмосферы, помогла стабилизировать температурный режим нашей планеты.
Но глобальная индустриализация, а также увеличение производственных мощностей изменили не только химический состав парниковых газов, но и сам смысл данного процесса.

Основные парниковые газы

Парниковые газы являются газообразными составляющими атмосферы природного, или антропогенного происхождения. Ученых давно интересовал вопрос: какое излучение поглощают парниковые газы? В результате кропотливых исследований они выяснили, что эти газы поглощают и переизлучают инфракрасное излучение. Они поглощают и излучают радиацию в том же инфракрасном диапазоне, что и поверхность Земли, атмосфера и облака.
К главным парниковым газам Земли относятся:

  • водяной пар
  • углекислый газ
  • метан
  • галогенированные углеводороды
  • оксиды азота.

Углекислый газ (CO2) оказывает наиболее сильное влияние на климат нашей планеты. В самом начале индустриализации, а это 1750 год, его средняя глобальная концентрация в атмосфере достигала 280 ± 10 млн-1. И вообще в течение 10000 лет концентрация находилась на постоянном уровне. Однако результаты исследований говорят о том, что уже в 2005 году концентрация CO2 возросла на 35% и достигла 379 млн-1 и это за каких-то 250 лет.
Метан (СН4) находится на втором месте. Его концентрация возросла с 715 млрд-1 в доиндустриальный период до 1774 млрд-1 в 2005 году. Объем метана в атмосфере на протяжении 10000 лет плавно увеличивался с 580 млрд-1 до 730 млрд-1. А за последние 250 лет увеличился на 1000 млрд-1.
Закись азота (N2O). Объем атмосферной закиси азота в 2005 г. достигал 319 млрд-1 и возрос на 18% в сравнении с доиндустриальным периодом (270 млрд-1). Исследования ледниковых кернов говорят о том, что за 10000 лет объем N2O от естественных источников изменился меньше чем на 3%. В 21 веке почти 40% N2O, попадающего в атмосферу, обусловлено хозяйственной деятельностью, потому что это соединение является основой удобрений. Однако, стоит отметить, что N2O выполняет важную роль в химии атмосферы, потому что выступает источником NО2, который разрушает стратосферный озон. В тропосфере NО2 отвечает за образование озона и в существенно влияет на химический баланс.
Принадлежащий к числу парниковых газов тропосферный озон непосредственно влияет на климат через поглощение длинных волн радиации Земли и коротких волн радиации Солнца, а также посредством химических реакций, изменяющих объемы прочих парниковых газов, к примеру, метана. Тропосферный озон отвечает за образование важного окислителя парниковых газов - радикала - ОН.
Главная причина роста объемов тропосферного О3 кроется в повышении антропогенной эмиссии предшественников озона - химических веществ, которые нужны для его образования - прежде всего, углеводородов и окислов азота. Период жизни тропосферного озона составляет несколько месяцев, а это существенно ниже, чем у прочих парниковых газов (СО2, СН4, N2O).
Водяной пар также является очень важным естественным парниковым газом, который оказывает существенное влияние на парниковый эффект. Рост температуры воздуха приводит к росту содержания влаги в атмосфере при примерном сохранении относительной влажности, вследствие чего усиливается парниковый эффект, и температура воздуха продолжает повышаться. Водяной пар способствует росту облачности и изменению количества осадков. Хозяйственная деятельность человека оказывает влияние на эмиссию водяного пара, не более 1%. Водяной пар, вместе со способностью поглощать радиацию почти во всем инфракрасном диапазоне, тоже способствует образованию ОН - радикалов.
Стоит упомянуть и фреоны, парниковая активность которых в 1300-8500 раз выше, чем у углекислого газа. Источники фреонов - это различные холодильники и всяческие аэрозоли от антиперспирантов до спреев от комаров.

Источники парниковых газов

Выбросы парниковых газов происходят из двух категорий источников:

  • естественные источники. В эпоху отсутствия промышленности главными источниками парниковых газов в атмосфере были явления испарения воды из Мирового океана, вулканы и лесные пожары. Однако на сегодняшний день вулканы выбрасывают в атмосферу лишь примерно 0,15-0,26 млрд. тонн углекислого газа в год. Объем водяного пара, за аналогичный период, можно выразить в испарении 355 тысяч кубических километров воды
  • антропогенные источники. Вследствие интенсивной промышленной деятельности парниковые газы поступают в атмосферу во время сгорания ископаемого топлива (углекислый газ), в процессе разработок нефтяных месторождений (метан), вследствие утечки хладогентов и применения аэрозолей (фреоны), стартов ракет (оксиды азота), а также работе автомобильных двигателей (озон). Кроме этого, промышленная деятельность людей способствует уменьшению лесных насаждений, которые являются основными поглотителями углекислого газа на материках.

Сокращение парниковых газов

На протяжении последних ста лет человечество активно занимается разработкой единой программы действий, направленных на снижение объемов выбросов парниковых газов. Наиболее значимой составляющей экологической политики можно назвать введение нормативов на выхлопы топливных продуктов сгорания и уменьшение применения топлива посредством перехода автопрома на создание электромобилей.
Деятельность атомных электростанций, которым не нужен уголь или нефтепродукты, косвенно снижает объем углекислого газа в атмосфере. Расчет парниковых газов осуществляется по специальной формуле или в специальных программах, которые анализируют деятельность предприятий.
Значительно уменьшить или полностью запретить вырубку лесов - это также очень действенный метод в борьбе с парниковыми газами. В процессе своей жизни деревья поглощают колоссальные объемы углекислого газа. В вот в процессе вырубки деревья этот газ выделяют. Уменьшение территорий вырубки леса под пахотные земли в тропических государствах уже дало ощутимые результаты по оптимизации мировых показателей выбросов парниковых газов.
Очень радует экологов модная сегодня тенденция инвестировать в развитие разных видов возобновляемой энергии. Объемы ее использования в глобальных масштабах медленно, но постоянно растут. Она называется «зелёной энергией», потому что образуется в естественных регулярных процессах, происходящих в природе.
Человек сегодня не может увидеть или почувствовать негативное влияние парниковых газов. Но с этой проблемой вполне могут столкнуться уже наши дети. Если думать не только о себе, то можно присоединиться к решению данной проблемы уже сегодня. Нужно просто посадить дерево возле своего дома, своевременно потушить костёр в лесу, или при первой же возможности поменять вое авто на «заправленное» электричеством.

Категории источников летучих выбросов

Наименование сектора

Пояснение

Нефть и природный газ

Охватывает летучие выбросы от всех видов деятельности, связанных с нефтью и газом. Первичные источники этих выбросов могут включать летучие утечки из оборудования, потери при испарении, удалении газов, сжигании в факелах и случайном высвобождении.

Охватывает выбросы от вентиляции, горения и других летучих источников, связанных с разведкой, производством, передачей, совершенствованием и перегонкой сырой нефти и распределением продуктов сырой нефти.

Удаление газов

Выбросы при удалении соответствующих газов и отходящего газа/испарений на нефтяных объектах.

Сжигание в факелах

Выбросы при непродуктивном сжигании в факелах попутного газа на нефтяных объектах.

Все прочие

Летучие выбросы на нефтяных объектах от протечки оборудования, потерь при хранении, поломок трубопроводов, разрушении стен, наземных хранилищ, миграции газа к поверхности, к вентиляционным отверстиям, образование биогенного газа в накопителях отходов и прочие виды газов или испарений, высвобождаемые непреднамеренно, без целей сжигания в факелах и удаления.

Разведка

Летучие выбросы (исключая удаление газа и сжигание в факелах) от бурения скважин для нефти, тестирования бурильных колонн и завершения работ скважин.

Добыча и повышение качества

Летучие выбросы от добычи нефти (исключая удаление и сжигание газа в факелах) происходят из устий нефтяных скважин, из нефтяных песков или из нефтяных сланцев во время запуска системы транспортировки нефти. Сюда входят летучие выбросы, связанные с обслуживанием скважин, нефтяных песков или нефтяных сланцев, транспортировкой неочищенных нефтепродуктов (т.е., притекающих к скважине газов и жидкостей, эмульсии, нефтяных сланцев и нефтяных песков) к очистным сооружениям для экстракции и повышения качества, системам обратного нагнетания попутного газа и системам водоотведения. Летучие выбросы от установок для обогащения группируются с выбросами от производства, что предпочтительнее, чем группировка с выбросами от перегонки, так как установки для обогащения часто интегрируются с установками экстракции и их относительный вклад в выбросы трудно установить. Однако установки для обогащения также могут быть интегрированы с установками очистки, когенерационными агрегатами или прочими промышленными объектами, и их относительные вклады в выбросы в этих случаях определить сложно.

Транспортировка

Летучие выбросы (исключая удаление и сжигание газа в факелах), связаны с транспортировкой товарной сырой нефти (включая стандартную, тяжелую и синтетическую нефть и битум) для повышения качества и перегонки. Системы транспортировки могут включать трубопроводы, танкерные суда, автоцистерны и железнодорожные цистерны. Потери при испарении в процессе хранения, заполнения и выгрузки, а также летучие утечки из этого оборудования являются первичными источниками этих выбросов.

Перегонка

Летучие выбросы (исключая удаление и сжигание газа в факелах) на нефтеперегонных заводах. Нефтеперегонные установки обрабатывают сырую нефть, газоконденсаты и синтетическую нефть и производят конечные продукты очистки (например, и в первую очередь, разные виды топлива и смазочные материалы). Там, где установки для очистки интегрированы с другими объектами (например, установками для обогащения или когенерационными установками) их относительные вклады в выбросы может оказаться сложно определить.

Распределение нефтепродуктов

Сюда включаются летучие выбросы (исключая удаление и сжигание газа в факелах) от транспортировки и распределения очищенных нефтепродуктов, включая конечные станции трубопроводов и распределительные станции. Потери при испарении в процессе хранения, заполнения и выгрузки, а также летучие утечки из оборудования являются первичными источниками этих выбросов.

Летучие выбросы от нефтяных систем (исключая удаление и сжигание газа в факелах, не учтенные в вышеприведенных категориях. Включает летучие выбросы от проливания и других случаев случайного высвобождения, установки по обработке отработанного масла и установки по удалению отходов нефтедобычи.

Природный газ

Охватывает выбросы от удаления газов, сжигания в факелах и других летучих источников, связанных с разведкой, производством, передачей, хранением и распределением природного газа (включая как попутный, так и природный газ).

Удаление газов

Выбросы при удалении природного газа и отходящего газа/испарений на газовых объектах.

Сжигание в факелах

Выбросы при сжигании в факелах природного газа и отходящего газа/испарений на газовых объектах.

Все прочие

Летучие выбросы на газовых объектах от протечки оборудования, потерь при хранении, поломок трубопроводов, разрушении стен, наземных хранилищ, миграции газа к поверхности, к вентиляционным отверстиям, образование биогенного газа в накопителях отходов и прочие виды газов или испарений, высвобождаемые непреднамеренно, без целей сжигания в факелах или удаления.

Разведка

Летучие выбросы (исключая удаление газа и сжигание в факелах) от бурения газовых скважин, тестирования бурильных колонн и завершения работы скважин.

Летучие выбросы (исключая удаление газа и сжигание в факелах) из газовых скважин через входные отверстия на устройствах переработки газа или, если обработка не требуется, в точках стыковки систем транспортировки газа. Включает летучие выбросы, связанные с обслуживанием скважин, сбором газа, переработкой и деятельностью по избавления от попутной воды и кислых газов.

Переработка

Летучие выбросы (исключая удаление газа и сжигание в факелах) от установок по переработке газа.

Транспортировка и хранение

Летучие выбросы от систем, используемых для транспортировки переработанного природного газа к покупателям (например, промышленным потребителям и системам распределения природного газа). Летучие выбросы от хранилищ природного газа должны также включаться в данную категорию. Выбросы из установок по удалению жидкостей из природного газа в системах газоснабжения должно учитываться как часть переработки природного газа (сектор 1.B.2.b.iii.3). Летучие выбросы, относящиеся к транспортировке жидкостей природного газа должны учитываться в категории 1.B.2.a.iii.3.

Распределение

Летучие выбросы (исключая удаление газа и сжигание в факелах) от распределения газа конечным потребителям.

Летучие выбросы от систем снабжения природным газом (исключая удаление и сжигание газа в факелах) не учтенные в вышеприведенных категориях. Сюда могут входить выбросы от фонтанирования скважин, повреждений трубопроводов или окапывания.

Одним из основных парниковых газов считают диоксид углерода - углекислый газ (С02). Его роль до недавнего времени слишком подчеркивалась, на его долю относили до половины общего вклада в парниковый эффект. Однако сейчас пришли к мнению, что эта оценка была завышенной.

Инструментально доказано, что в последние десятилетия ежегодное накопление С0 2 в атмосфере составляет 0,4%. С начала XX в. уровень С0 2 в атмосфере увеличился на 31%. Эта величина существенна, чтобы повысить температуру. По самому оптимистичному сценарию, температура повысится в ближайшее столетие на 1,5-2°С, а но самому пессимистичному - почти на 6°С.

Каждый год в атмосферу из антропогенных источников поступает 6 млрд т диоксида углерода, из них 3 млрд т поглощаются растительностью в процессах фотосинтеза, оставшиеся 3 млрд т накапливаются. Общая сумма накоплений по вине человека за прошедшие 100 лет составила около 170 млрд т. Приведенные данные следует рассматривать в сопоставлении со 190 млрд т углекислого газа, которые ежегодно поступают в атмосферу вследствие естественных процессов. По оценкам ряда российских ученых, вклад антропогенной деятельности в глобальное потепление составляет лишь 10-15%, а остальное приходится на долю глобальных природных циклов. Поэтому усилия человечества на пути снижения выброса парниковых газов едва ли смогут заметно замедлить грядущее потепление.

Рост концентрации С0 2 не означает гибель для биосферы. Миллионы лет назад, в каменноугольный период, концентрация С0 2 была в 10 раз выше, чем сейчас. В тот период растительность буйно развивалась, деревья достигали больших размеров. Но для человеческой популяции условия были неблагоприятными. Предельный верхний уровень содержания С0 2 в атмосфере для человека не установлен.

Существуют разные гипотезы о причинах накопления С0 2 в атмосфере. Согласно первой, наиболее распространенной точке зрения углекислый газ накапливается в атмосфере как продукт сжигания органического топлива. Вторая гипотеза основной причиной роста содержания С0 2 считает нарушение функций микробных сообществ в почвах Сибири и части Северной Америки. Независимо от выбора гипотезы накопление диоксида углерода происходит во все увеличивающихся масштабах.

Большое воздействие на климат оказывают такие парниковые газы, как метан, оксиды азота и водяной пар.

До последнего времени недооценивалась роль метана (СН 4). Он активно участвует в парниковом эффекте. Кроме того, поднимаясь на высоту 15-20 км, метан под действием солнечных лучей разлагается на водород и углерод, который, соединяясь с кислородом, образует диоксид углерода. Это еще больше усиливает парниковый эффект.

В природе СН 4 образуется в болотах при гниении органики, его еще называют болотным газом. Метан также возникает в обширных мангровых зарослях в тропических областях. Рост концентрации СН 4 происходит в мире за счет разрушения биоты. Кроме того, он поступает в атмосферу из тектонических разломов на суше и на дне океана.

Антропогенные выбросы метана связаны с разведкой и добычей полезных ископаемых, со сгоранием минерального топлива в тепловых электростанциях и органического топлива в двигателях внутреннего сгорания транспортных средств, его выделением на животноводческих фермах. Использование азотных удобрений, выращивание риса, свалки бытовых отходов, утечки и неполное сгорание природного газа также ведут к росту выбросов метана и оксидов азота, которые являются мощными парниковыми газами. Содержание СН 4 в атмосфере, по инструментальным данным, возрастает на 1% в год. За прошедшие 100 лет рост составил 145%.

Оксиды азота накапливаются в атмосфере за год в пределах 0,2%, а общее накопление за период интенсивного промышленного развития составило около 15%. Увеличение содержания оксидов азота обусловливается сельскохозяйственной деятельностью и массовым уничтожением лесов.

Быстрое потепление климата на Земле приводит к ускорению кругооборота воды в природе, усилению испарения с водных поверхностей, что способствует накоплению водяного пара в атмосфере и активизации действия парникового эффекта. По мнению некоторых ученых, около 60% парникового эффекта вызывают пары воды. Чем больше их в тропосфере, тем сильнее парниковый эффект, а их концентрация в свою очередь зависит от приземных температур и площади водной поверхности.

Ответ редакции

В понедельник, 30 ноября, на которой ожидается подписание глобального соглашения по снижению странами выбросов парниковых газов. Новое соглашение придёт на смену Киотскому протоколу . Конференция продлится до 11 декабря, в ней принимают участие 150 глав государств и правительств.

О том, что представляют собой парниковые газы, рассказывает АиФ.ru.

Парниковые газы — это группа газообразных соединений, которые входят в состав атмосферы Земли. Они практически не пропускают через себя тепловое излучение, исходящее от планеты. Таким образом, по мнению ряда исследователей, слой парниковых газов сильно воздействует на климат, нагревая атмосферу Земли. Этот процесс также часто называют «парниковым эффектом».

Виды парниковых газов

В список парниковых газов, согласно приложению «А» к Киотскому протоколу, входят следующие соединения:

Водяной пар — самый распространенный парниковый газ. Данных о росте его концентрации в атмосфере нет.

Диоксид карбона (углекислый газ) (СО2) — важнейший источник климатических изменений, на долю которого может приходиться около 64% глобального потепления.

Основными источниками выброса углекислого газа в атмосферу являются:

Закись азота (N2O) — третий по значимости парниковый газ Киотского протокола. На него приходится около 6 % глобального потепления. Выделяется при производстве и применении минеральных удобрений, в химической промышленности, в сельском хозяйстве и т.п.

Перфторуглероды — ПФУ (Perfluorocarbons — PFCs). Углеводородные соединения, в которых фтор частично замещает углерод. Основными источниками эмиссии этих газов является производство алюминия, электроники и растворителей.

Гидрофторуглероды (ГФУ) — углеводородные соединения, в которых галогены частично замещают водород.

Гексафторид серы (SF6) — парниковый газ, использующийся в качестве электроизоляционного материала в электроэнергетике. Выбросы происходят при его производстве и использовании. Чрезвычайно долго сохраняется в атмосфере и является активным поглотителем инфракрасного излучения. Поэтому это соединение, даже при относительно небольших выбросах, обладает потенциальной возможностью влиять на климат в течение продолжительного времени в будущем.

Сокращение выбросов парниковых газов

1. Повышение эффективности использования энергии в соответствующих секторах национальной экономики;

2. Охрана и повышение качества поглотителей и накопителей парниковых газов с учетом своих обязательств по соответствующим международным природоохранным соглашениям; содействие рациональным методам ведения лесного хозяйства, облесению и лесовозобновлению на устойчивой основе;

3. Поощрение устойчивых форм сельского хозяйства в свете соображений, связанных с изменением климата;

4. Содействие внедрению, проведению исследовательских работ, разработка и более широкое использование новых и возобновляемых видов энергии, технологий поглощения диоксида углерода и инновационных экологически безопасных технологий;

5. Постепенное сокращение или устранение рыночных диспропорций, фискальных стимулов, освобождение от налогов и пошлин, субсидий, противоречащих цели Конвенции, во всех секторах-источниках выбросов парниковых газов и применение рыночных инструментов;

6. Поощрение надлежащих реформ в соответствующих секторах в целях содействия осуществлению политики и мер, ограничивающих или сокращающих выбросы парниковых газов;

7. Меры по ограничению и/или сокращению выбросов парниковых газов на транспорте;

Ограничение и/или сокращение выбросов метана путем рекуперации и использования при удалении отходов, а также при производстве, транспортировке и распределении энергии.

Данные положения Протокола носят общий характер и предоставляют Сторонам возможность самостоятельно выбирать и реализовывать тот комплекс политики и мер, который будет в максимальной степени соответствовать национальным обстоятельствам и приоритетам.

Парниковые газы в России

Основной источник выбросов парниковых газов в России это:

  • энергетический сектор (71%);
  • добыча угля, нефти и газа (16%);
  • промышленность и строительство (около 13%).

Таким образом, наибольший вклад в снижение выбросов парниковых газов в России может внести реализация огромного потенциала энергосбережения. В настоящее время энергоемкость экономики страны превышает среднемировой показатель в 2,3 раза, а средний показатель для стран ЕС — в 3,2 раза. Потенциал энергосбережения в России оценивается в 39-47% текущего потребления энергии, и, в основном, он приходится на производство электроэнергии, передачу и распределение тепловой энергии, отрасли промышленности и непроизводительные энергопотери в зданиях.

Киотский протокол — международное соглашение, принятое в Киото (Япония) в декабре 1997 года в дополнение к Рамочной конвенции ООН об изменении климата (РКИК). Оно обязывает развитые страны и страны с переходной экономикой сократить или стабилизировать выбросы парниковых газов.

Парниковый эффект в атмосфере нашей планеты вызван тем, что поток энергии в инфракрасном диапазоне спектра, поднимающийся от поверхности Земли, поглощается молекулами газов атмосферы, и излучается обратно в разные стороны, в результате половина поглощенной молекулами парниковых газов энергии возвращается обратно к поверхности Земли, вызывая её разогрев. Следует отметить, что парниковый эффект - это естественное атмосферное явление (рис.5). Если бы на Земле вообще не было парникового эффекта, то средняя температура на нашей планеты была бы около -21°С, а так, благодаря парниковым газам, она составляет +14°С. Поэтому, чисто теоретически, деятельность человека, сопряжённая с выбросом парниковых газов в атмосферу Земли, должна приводить к дальнейшему разогреву планеты. Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар (36-70%), углекислый газ (9-26%), метан (4-9%), галоуглероды, оксид азота.

Рис.

Угольные электростанции, заводские трубы, автомобильные выхлопы и другие созданные человечеством источники загрязнения вместе выбрасывают в атмосферу около 22 миллиардов тонн углекислого газа и других парниковых газов в год. Животноводство, применение удобрений, сжигание угля и другие источники дают около 250 миллионов тонн метана в год. Около половины всех парниковых газов, выброшенных человечеством, осталось в атмосфере. Около трёх четвертей всех антропогенных выбросов парниковых газов за последние 20 лет вызваны использованием нефти, природного газа и угля (рис.6). Большая часть остального вызвана изменениями ландшафта, в первую очередь вырубкой лесов.

Рис.

Водяной пар - самый главный на сегодня парниковый газ. Однако водяной пар участвует и во множестве других процессов, что делает его роль далеко неоднозначной в разных условиях.

Прежде всего, при испарении с поверхности Земли и дальнейшей конденсации в атмосфере, в нижние слои атмосферы (тропосферу) благодаря конвекции переносится до 40% от всего тепла, поступающего в атмосферу. Таким образом, водяной пар при испарении несколько понижает температуру поверхности. Но выделившееся в результате конденсации в атмосфере тепло идет на ее разогрев, и в дальнейшем, на разогрев и самой поверхности Земли.

Но после конденсации водяного пара образуются водяные капельки либо кристаллики льда, которые интенсивно участвуют в процессах рассеяния солнечного света, отражая часть солнечной энергии назад в космос. Облака, как раз представляющие из себя скопления этих капелек и кристалликов, увеличивают долю солнечной энергии (альбедо), отражаемой самой атмосферой обратно в космос (а дальше осадки из облаков могут выпасть в виде снега, увеличивая альбедо поверхности).

Однако у водяного пара, даже сконденсированного в капельки и кристаллики, все равно остаются мощные полосы поглощения в инфракрасной области спектра, а значит роль тех же облаков далеко не однозначна. Двойственность эта особенно заметна в следующих крайних случаях - при покрытии облаками неба в солнечную летнюю погоду температура на поверхности снижается, а если то же самое происходит зимней ночью, то наоборот, повышается. На окончательный результат влияет и положение облаков - на низких высотах мощная облачность отражает много солнечной энергии, и баланс может быть в данном случае в пользу антипарникового эффекта, а вот на больших высотах, разреженные перистые облака пропускают довольно много солнечной энергии вниз, но даже разреженные облака являются почти непреодолимы препятствием для инфракрасного излучения и, и тут можно говорить о преобладании парникового эффекта.

Еще одна особенность водяного пара - влажная атмосфера в некоторой степени способствует связыванию другого парникового газа - углекислого, и переносу его дождевыми осадками к поверхности Земли, где он в результате дальнейших процессов может быть израсходован в процессах образования карбонатов и горючих полезных ископаемых.

Человеческая деятельность очень слабо непосредственно влияет на содержание водяного пара в атмосфере - только лишь за счет роста площади орошаемых земель, изменения площади болот и работы энергетики, что на фоне испарения со всей водной поверхности Земли и вулканической деятельности ничтожно мало. Из-за этого довольно часто на нем мало акцентируется внимание при рассмотрении проблемы парникового эффекта.

Однако косвенное влияние на содержание водяного пара может быть очень велико, за счет обратных связей между содержанием водяного пара в атмосфере и потеплением, вызванном другими парниковыми газами, что мы сейчас и рассмотрим.

Известно, что при увеличении температуры увеличивается и испарение водяного пара, и на каждые 10 °С возможное содержание водяного пара в воздухе почти удваивается. Например, при 0 °С давление насыщенного пара составляет около 6 мб, при +10 °С - 12 мб, а при +20 °С - 23 мб.

Видно, что содержание водяного пара сильно зависит от температуры, и при понижении ее по каким-либо причинам, во-первых, понижается сам парниковый эффект водяного пара (благодаря уменьшившемуся содержанию), а во-вторых, происходит конденсация водяного пара, которая конечно, сильно тормозит понижение температуры за счет выделения конденсационного тепла, но зато уже после конденсации увеличивается отражение солнечной энергии, как самой атмосферы (рассеяние на капельках и кристаллах льда), так и поверхности (выпадение снега), что дополнительно понижает температуру.

При повышении температуры содержание водяного пара в атмосфере растет, его парниковый эффект увеличивается, что усиливает первоначальное повышение температуры. В принципе, растет и облачность (больше водяного пара попадает в относительно холодные области), однако крайне слабо - по данным И. Мохова порядка 0,4% на градус потепления, что не может сильно повлиять на рост отражения солнечной энергии.

Углекислый газ - второй по вкладу в парниковый эффект на сегодня, не вымораживается при понижении температуры, и продолжает создавать парниковый эффект даже при самых низких температурах, возможных в земных условиях. Вероятно, именно благодаря постепенному накоплению углекислого газа в атмосфере вследствии вулканической деятельности, Земля смогла выйти из состояния мощнейших оледенений (когда даже на экватор был покрыт мощнейшим слоем льда), в которые она попадала в начале и конце протерозоя.

Углекислый газ вовлечен в мощный круговорот углерода в системе литосфера-гидросфера-атмосфера, и изменение земного климата связывают прежде всего с изменением баланса его поступления в атмосферу и выведения из нее.

Благодаря относительно высокой растворимости углекислого газа в воде, содержание углекислого газа в гидросфере (прежде всего океаны) сейчас составляет 4х104 Гт (гигатонн) углерода (отсюда и далее приводятся данные по СО2 в пересчете на углерод), включая глубинные слои (Путвинский, 1998). В атмосфере в настоящее время содержится около 7,5х102 Гт углерода (Алексеев и др., 1999). Небольшим содержание СО2 в атмосфере было далеко не всегда - так в архее (около 3,5 млрд. лет назад) атмосфера состояла почти на 85-90% из углекислого газа, при существенно большем давлении и температуре (Сорохтин, Ушаков, 1997). Однако поступление значительных масс воды на поверхность Земли в результате дегазации недр, а также возникновение жизни обеспечило связывание почти всего атмосферного и значительной части растворенного в воде углекислого газа в виде карбонатов (в литосфере хранится около 5,5х107 Гт углерода (доклад МГЭИК, 2000)). Также углекислый газ стал преобразовываться живыми организмами в различные формы горючих полезных ископаемых. Кроме того, связывание части углекислого газа произошло и за счет накопления биомассы, общие запасы углерода в которой сравнимы с запасами в атмосфере, а учитывая еще и почвы - превышает в несколько раз.

Однако, нас прежде всего интересуют потоки, обеспечивающие поступление углекислого газа в атмосферу, и выводящие его из нее. Литосфера сейчас обеспечивает весьма небольшой поток углекислого газа, поступающего в атмосферу прежде всего благодаря вулканической деятельности - около 0.1 Гт углерода в год (Путвинский, 1998). Значительно большие потоки наблюдаются в системах океан (вместе с обитающими там организмами) - атмосфера, и наземная биота - атмосфера. В океан ежегодно поступает из атмосферы около 92 Гт углерода и 90 Гт возвращается обратно в атмосферу (Путвинский, 1998). Таким образом, океаном ежегодно дополнительно изымается из атмосферы около 2 Гт углерода. В то же время в процессах дыхания и разложения наземных умерших живых существ в атмосферу поступает около 100 Гт углерода в год. В процессах фотосинтеза наземной растительностью изымается из атмосферы тоже около 100 Гт углерода (Путвинский, 1998). Как мы видим, механизм поступления и изъятия углерода из атмосферы достаточно сбалансирован, обеспечивая приблизительно равные потоки. Современная жизнедеятельность человека включает в этот механизм все увеличивающийся дополнительный поток углерода в атмосферу за счет сжигания горючих ископаемых (нефть, газ, уголь и пр.) - по данным, например, за период 1989-99 гг., в среднем около 6,3 Гт в год. Также поток углерода в атмосферу увеличивается и за счет вырубки и частичного сжигания лесов - до 1,7 Гт в год (доклад МГЭИК, 2000), при этом прирост биомассы, способствующий поглощению СО2 составляет всего около 0,2 Гт в год вместо почти 2 Гт в год. Даже учитывая возможность поглощения около 2 Гт дополнительного углерода океаном, все равно остается довольно значимый дополнительный поток (к настоящему времени около 6 Гт в год), увеличивающий содержание углекислого газа в атмосфере. Кроме того, поглощение углекислого газа оканом уже в ближайшем будущем может уменьшится, и даже возможен обратный процесс - выделение углекислого газа из Мирового океана. Это связано с понижением растворимости углекислого газа при повышении температуры воды - так, например, при повышении температуры воды всего с 5 до 10 °С, коэффициент растворимости углекислого газа в ней уменьшается приблизительно с 1,4 до 1,2.

Итак, поток углекислого газа в атмосферу, вызываемый хозяйственной деятельностью не велик по сравнению с некоторыми естественными потоками, однако его нескоменсированность приводит к постепенному накоплению СО2 в атмосфере, что разрушает баланс поступления и изъятия СО2, складывавшийся за миллиарды лет эволюции Земли и жизни на ней.

Многочисленные факты геологического и исторического прошлого свидетельствуют о связи между изменениями климата и колебаниями содержания парниковых газов. В период от 4 до 3,5 млрд. лет назад яркость Солнца была примерно на 30% меньше, чем сейчас. Однако и под лучами молодого, «бледного» Солнца на Земле развивалась жизнь и образовывались осадочные породы: по крайней мере на части земной поверхности температура была выше точки замерзания воды. Некоторые ученые высказывают предположение, что в ту пору в земной атмосфере содержал ось в 1000 раз больше диоксида углерода , чем сейчас, и это компенсировало нехватку солнечной энергии, поскольку больше тепла, излучаемого Землей, оставалось в атмосфере. Усиливавшийся парниковый эффект мог стать одной из причин исключительно теплого климата позднее - в мезозойскую эру (эпоху динозавров). По данным анализа ископаемых остатков на Земле в ту пору было на 10-15 ос теплее, чем сейчас. Следует заметить, что тогда, 100 млн. лет назад и раньше, континенты занимали иное положение, чем в наше время, и океаническая циркуляция также была иной, поэтому перенос тепла от тропиков в полярные районы мог быть больше. Однако расчеты, выполненные Эриком Дж. Барроном, работающим сейчас в Пенсильванском университете, и другими исследователями, показывают, что с палеоконтинентальной географией могло быть связано не более половины мезозойского потепления. Остающуюся часть потепления легко объяснить ростом содержания диоксида углерода. Это предположение было впервые выдвинуто советскими учеными А. Б. Роновым из Государственного гидрологического института и М. И. Будыко из Главной геофизической обсерватории. Расчеты, подтверждающие это предложение, были проведены Эриком Барроном, Старли Л. Томпсоном из Национального центра атмосферных исследований (NCAR). Из геохимической модели, разработанной Робертом А. Бернером и Антонио К. Ласагой из Йельского университета и ныне покойным Робертом. Поля в штате Техас превратились в пустыню, после того как здесь в 1983 г. некоторое время продержалась засуха Такую картину, как показывают расчеты по компьютерным моделям, можно будет наблюдать во многих местах, если в результате глобального потепления уменьшится влажность почвы в центральных районах континентов, где сосредоточено производство зерна.

М. Гаррелсом из Университета Южной Флориды, следует, что диоксид углерода мог выделяться при исключительно сильной вулканической активности на срединно-океанических хребтах, где поднимающаяся магма формирует новое океаническое дно. Прямые свидетельства, указывающие на связь во время оледенений между содержанием в атмосфере парниковых газов и климатом, можно «извлечь» из пузырьков воздуха, включенных в антарктический лед, который образовался в древние эпохи в результате спрессовывания падающего снега. Группа исследователей, возглавляемая Клодом Лорью из Лаборатории гляциологии и геофизики в Гренобле, изучила колонку льда длиной 2000 м (соответствующую периоду продолжительностью 160 тыс. лет), полученную советскими исследователями на станции «Восток» в Антарктиде. Лабораторный анализ газов, заключенных в этой колонке льда, показал, что в древней атмосфере концентрации диоксида углерода и метана менялись согласованно и, что более важно, «в такт» с изменениями средней локальной температуры (она была определена по отношению концентраций изотопов водорода в молекулах воды). Во время последнего межледникового периода, продолжающегося уже 10 тыс. лет, и в предшествующее ему межледниковье (130 тыс. лет назад) продолжительностью также 10 тыс. лет, средняя температура в этом районе была на 10 ос выше, чем во время оледенений. (В целом на Земле в указанные периоды было на 5 ос теплее.) В эти же периоды в атмосфере содержал ось на 25% больше диоксида углерода и на 100070 больше метана, чем во время оледенений. Неясно, было ли причиной изменение содержания парниковых газов, а следствием климатические изменения или наоборот. Скорее всего, причиной оледенений были изменения орбиты Земли и особая динамика продвижения и отступания ледников; однако эти климатические колебания могли усиливаться благодаря изменениям биоты и колебаниям океанической циркуляции, влияющим на содержание парниковых газов в атмосфере. Еще более подробные данные о флуктуациях содержания парниковых газов и изменениях климата имеются для последних 100 лет, за которые произошло дальнейшее увеличение на 25% концентрации диоксида углерода и на 100% метана. «Записи» средней температуры на земном шаре для последних 100 лет были изучены двумя группами исследователей, возглавляемыми Джеймсом Э. Хансеном из Годдардовского института космических исследований Национального управления по аэронавтике и исследованию космического пространства, и Т. М. Л. Уигли из Отдела климата Университета Восточной Англии.

Задержка тепла атмосферой - основной компонент энергетического баланса Земли (рис.8). Примерно 30% энергии, поступающей от Солнца, отражается (слева) либо от облаков, либо от частиц, либо от поверхности Земли; остальные 70% поглощаются. Поглощенная энергия переизлучается в инфракрасном диапазоне поверхностью планеты.

Рис.

Эти ученые воспользовались данными измерений на метеостанциях, разбросанных по всем континентам (группа из Отдела климата включила также в анализ данные измерений на море). Вместе с тем в двух группах были приняты разные методики анализа наблюдений и учета «искажений», связанных, например, с тем, что некоторые метеостанции за сто лет «переехали» на другое место, а некоторые, расположенные в городах, давали данные, «загрязненные» влиянием тепла, выделяемого промышленными предприятиями или накапливаемого за день зданиями и мостовой. Последний эффект, приводящий к появлению «островов тепла», очень заметен в развитых странах, например в США. Вместе с тем, даже если рассчитанную для США поправку (она была получена Томасом Р. Карлом из Национального центра климатических данных в Эшвилле, шт. Северная Каролина, и П. Д. Джоунсом из Университета Восточной Англии) распространить на все данные по земному шару, в обеих записях останется «<реальное» потепление величиной 0,5 О С, относящееся к последним 100 годам. В согласии с общей тенденцией 1980-е годы остаются самым теплым десятилетием, а 1988, 1987 и 1981 гг. - наиболее теплыми годами (в порядке перечисления). Можно ли считать это «сигналом» парникового потепления? Казалось бы, можно, однако в действительности факты не столь однозначны. Возьмем для примера такое обстоятельство: вместо неуклонного потепления, какое можно ожидать от парникового эффекта, быстрое повышение температуры, происходившее до конца второй мировой войны, сменилось небольшим похолоданием, продлившимся до середины 1970-х годов, за которым последовал второй период быстрого потепления, продолжающийся по сей день. Какой характер примет изменение температуры в ближайшее время? Чтобы дать такой прогноз, необходимо ответить на три вопроса. Какое количество диоксида углерода и других парниковых газов будет выброшено в атмосферу? Насколько при этом возрастет концентрация этих газов в атмосфере? Какой климатический эффект вызовет это повышение концентрации, если будут действовать естественные и антропогенные факторы, которые могут ослаблять или усиливать климатические изменения? Прогноз выбросов - нелегкая задача для исследователей, занимающихся анализом человеческой деятельности. Какое количество диоксида углерода попадет в атмосферу, зависит главным образом от того, сколько ископаемого топлива будет сожжено и сколько лесов вырублено (последний фактор ответствен за половину прироста парниковых газов с 1800 г. и за 20070прироста в наше время). И тот и другой фактор зависят в свою очередь от множества причин. Так, на потреблении ископаемого топлива сказываются рост населения, переход к альтернативным источникам энергии и меры по экономии энергии, а также состояние мировой экономики. Прогнозы в основном сводятся к тому, что потребление ископаемого топлива на земном шаре в целом будет увеличиваться примерно с той же скоростью, что и сегодня намного медленнее, чем до энергетического кризиса 1970-х годов. В результате эмиссия (поступление в атмосферу) диоксида углерода в ближайшие несколько десятилетий, будет увеличиваться на 0,5-2070 в год. Другие парниковые газы, такие как ХФУ, оксиды азота и тропосферный озон, могут вносить в потепление климата почти столь же большой вклад, что и диоксид углерода, хотя в атмосферу их попадает значительно меньше: объясняется это тем, что они более эффективно поглощают солнечную радиацию. Предсказать, какова будет эмиссия этих газов - задача еще более трудная. Так, например, не вполне ясно происхождение некоторых газов, в частности метана; величина выбросов других газов, таких как ХФУ или озон, будет зависеть от того, какие изменения в технологии и политике произойдут в ближайшем будущем.

Обмен углеродом между атмосферой и различными «резервуарами» на Земле (рис.9). Каждое число указывает в миллиардах тонн приход или уход углерода (в форме диоксида) за год или его запас в резервуаре. В этих естественных циклах, один из которых «замыкается» на сушу,а другой на океан, из атмосферы удаляется ровно столько диоксида углерода, сколько в нее поступает, однако человеческая деятельность - сведение лесов и сжигание ископаемого топлива - приводит к тому, что содержание углерода в атмосфере ежегодно повышается на 3 млрд. тонн. Данные заимствованы из работы Берта Болина, работающего в Стокгольмском университете


Рис.9

Предположим, мы имеем разумный прогноз того, как будет изменяться эмиссия диоксида углерода. Какие изменения в этом случае произойдут с концентрацией этого газа в атмосфере? Атмосферный диоксид углерода «потребляется» растениями, а также океаном, где он расходуется на химические и биологические процессы. С изменением концентрации атмосферного диоксида углерода будет, вероятно, меняться и скорость «потребления» этого газа. Иными словами, процессы, обусловливающие изменение содержания атмосферного диоксида углерода, должны включать обратную связь. Диоксид углерода является «сырьем» для фотосинтеза в растениях, поэтому потребление его растениями скорее всего будет увеличиваться с накоплением его в атмосфере, что замедлит это накопление. Аналогично этому, поскольку содержание диоксида углерода в поверхностных водах океана находится в примерном равновесии с его содержанием в атмосфере, увеличение поглощения диоксида углерода океанской водой приведет к замедлению его накопления в атмосфере. Может случиться, однако, что накопление в атмосфере диоксида углерода и других парниковых газов приведет в действие механизмы положительной Обратной связи, которые будут усиливать климатический эффект. Так, быстрые изменения климата могут привести к исчезновению части лесов и других экосистем, что ослабит способность биосферы поглощать диоксид углерода. Более того, потепление может привести к быстрому высвобождению углерода, содержащегося в почве в составе мертвой органической материи. Этот углерод, количество которого вдвое выше, чем в атмосфере, постоянно превращается в диоксид углерода и метан под действием почвенных бактерий. Потепление может ускорить их «работу», в результате чего ускорится выделение диоксида углерода (из сухих почв) и метана (из районов, занятых рисовыми полями, из свалок и заболоченных земель). Довольно много" метана запасено также в осадках на континентальном шельфе и ниже слоя вечной мерзлоты в Арктике в виде клатратов - молекулярных решеток, состоящих из молекул метана и воды. Потепление шельфовых вод и таяние вечной мерзлоты могут привести к высвобождению метана. Несмотря на указанные неопределенности, многие исследователи считают, что поглощение диоксида углерода растениями и океаном замедлит накопление этого газа в атмосфере - по крайней мере в ближайшие 50-100 лет. Типичные оценки, основанные на существующей в настоящее время скорости эмиссии, показывают, что из всего количества диоксида углерода, попадающего в атмосферу, оставаться там будет примерно половина. Из этого следует, что удвоение концентрации диоксида углерода по сравнению с 1900 г. (до уровня 600 млн. произойдет примерно между 2030 и 2080 гг. Вместе с тем другие парниковые газы будут, скорее всего, накапливаться в атмосфере быстрее.

error: Content is protected !!