Что представляет собой электромагнитная картина мира. Общая характеристика электромагнитной картины мира. Принципы электромагнитной картины мира


Физики в течение XIX века пытались объяснить электромагнитные явления в механической картины мира. Но эти попытки были провальными, так как электромагнитные явления слишком отличались от механических процессов. М. Фарадей и Дж. Максвелл внесли существенный вклад в формирование электромагнитной картины мира. Созданная Дж. Максвеллом теория электромагнитного поля стала причиной появление электромагнитной картины мира.

Максвелл разработал теорию в основе которой было явление, которое называлось явлением электромагнитной индукции. Фарадей проводил эксперименты при помощи магнитной стрелы, стремясь объяснить природу магнитных и электрических явлений. После проведенного эксперимента он пришел к выводу, что вращение магнитной стрелки зависит не от электрических зарядов, которые находятся в проводнике, а от особого состояния окружающей среды, которое появлялось рядом с магнитной стрелкой. Это означало, что ток взаимодействует с магнитной стрелкой с помощью окружающей проводник среды. Так было введено такое понятие поля как совокупность магнитных силовых линий, пересекающих пространство и индуцировать электрический ток. Это открытие дало Фарадею понять, что представления о материи являются континуальными, непрерывными, а не корпускулярными.

Теория электромагнитного поля Максвелла заключается в том, что при изменении магнитного поля не только в окружающих телах, но и в вакууме приводит к возникновению электрического поля, которое, способствует появлению магнитного поля. Так в физике возникла новая реальность - электромагнитное поле. В физикетеория электромагнитного поля Максвелла ознаменовала собой начало совершенно нового этапа. В соответствии с данной теорией мир это единая электродинамическая система, которая включает в себя электрически заряженные частицы, взаимодействующих посредством электромагнитного поля.

Проводя анализ состояния физики в период возникновения самых первых гипотез о строении атома можно увидеть, что постановка такой цели ближайшим образом была связана с разработкой электромагнитной картины мира. Согласно постулатам электромагнитной картины мира, все процессы природы и мира могут быть рассмотрены как взаимодействие вещества и эфира. Предполагалось, что все силы природы можно унифицировать, сводя абсолютно разные типы сил к изменениям состояния самого эфира (“Один эфир для света, теплоты и электричества”, - в конце XIX века писал Кельвин). Можно считать, что и ньютоновский закон всемирного тяготения сводился к передаче сил со временем с конечной скоростью в эфире. Взаимодействие атомов вещества и эфира рассматривалось как метод (источник) возникновения зарядов.

В первую очередь, согласно программе Максвелла и его последователей (например, Герца, Ленарда), можно предположить, что заряды представляются как некие процессы возмущения эфира (на основании ключевой идеи максвелловской теории электромагнитного поля о тождественности тока проводимости и тока смещения, что и позволило представить плотности зарядов-токов в форме потока электромагнитного поля). Только вот под влиянием идей атомистики в физике множество раз высказывались гипотезы о возможности перенести принцип атомизма и на заряды. Такие идеи нашли теоретическое и эмпирическое подтверждения после первого открытия электронов и разработки электродинамики Лоренца, которая основывалась на представлении о зарядах-токах как о некой системе электронов, взаимодействующих с электромагнитным полем. После в картину мира уже точно вошло новое представление о зарядах. Они уже рассматривались в качестве особых частиц - электронов (атомов электричества), взаимодействие их с эфиром (электромагнитным полем) представлялось как глубокое основание всех физических процессов. Тогда в физической картине мира кроме “эфира” и “атомов вещества” появился совершенно новый элемент - так называемые “атомы электричества”, и тогда же возникла проблема их взаимоотношения с атомами “обычного” вещества. Большой интерес к вопросам о строении вещества, который возник в конце XIX - начале XX века в физике, во многом был продиктован как раз этой проблемой. Рассуждая на эту тему, ученые, в первую очередь задали вопрос: не входят ли электроны в состав атома? Хотя сама формулировка данного вопроса была достаточно смелым шагом, так как она приводила к совершенно новым представлениям в картине мира (нужно было согласится со сложным строением атомов вещества). Именно поэтому конкретизация вопроса соотношения электронов и атомов была связана с выходом в сферу философского анализа, что происходит при радикальных скачках в картине мира (приведем пример, Дж. Дж. Томсон, он был одним из инициаторов постановки задачи о связи атомов и электронов вещества, он искал опору в идеях атомистики Босковича, чтобы доказать саму необходимость перехода в картине мира “атомов вещества” к “атомам электричества”). Но так или иначе можно сказать, что проблема соотношения атомов и электронов и ее анализ под углом зрения сложности атома была рассмотрена при помощи развития физической картины мира.

С эволюцией физики, по мере возникновения новых данных, полученных с помощью эксперимента, и теоретических представлений (особенно после создания теории радиоактивного распада и его открытия) конструирование разных моделей строения атома стало обычным явлением у физиков. Однако само построение данных моделей началось немного раньше, под влиянием проблемы электрона, который был введен в качестве особого элемента в картину физической реальности.

Таким образом, мы можем сделать вывод, что к построению гипотетических схем структуры атома импульс был создан электромагнитной картиной мира, включившей в состав теоретического и эмпирического материала физики под влиянием предшествующего развития и при участии философских идей совершенно новые элементы .

Механическую картину мира во многом изменили новые физические и философские взгляды на материю, силы, пространство и время. Эти изменения не были революционными, так как они и осуществились в пределах классической науки. При помощи соединения новых идей и старых механистических представлений о природе электромагнитная картина мира является промежуточной. Существенно изменились лишь представления о материи: корпускулярные идеи заменились континуальными (полевыми). Материя уже не являлась совокупностью неделимых атомов, которые переставали быть конечным пределом делимости материи. Пределом делимости принималось абсолютно непрерывное бесконечное поле с волновыми движениями в нем и электрическими зарядами. Согласно электромагнитной картине мира, материя может существовать лишь в двух видах - поле и вещество. Превращения друг в друга невозможно в электромагнитной картине мира. Поле обладает приоритетом относительно вещества, а значит, главным свойством материи является непрерывность в противовес дискретности. Поперечные электромагнитные волны являются способом распространения электромагнитного поля, которые захватывают постоянно новые области пространства. Законы Ньютона не в состоянии описать заполнение пространства электромагнитным полем, потому что механика не воспринимает этот механизм. В механике одно материальное явление не может зависеть от изменения другого, и в совокупности они не могут создавать единой сущности.

Изменения коснулись и понятия движения. Движение могло рассматриваться не только как обычное механическое перемещение, но и как распределение колебаний в поле. Соответственно законы электродинамики Максвелла потеснили законы механики Ньютона.

Решение такой проблемы физического взаимодействия должно было удовлетворять новой физической картине мира. Фарадеевским принципом близкого действия потеснил ньютоновский принцип дальнодействия, что привело к пониманию взаимодействия как непрерывного от точки к точке и с конечной скоростью.

Поля не имеют точно очерченных границ и тем самым перекрывают друг друга. Этот факт означал, что концепция абсолютного времени и абсолютного пространства Ньютона не соответствовала новым полевым представлениям о материи.

В первую очередь в самом понимании времени и пространства электромагнитная картина мира происходила из убеждения, что абсолютное пустое пространство заполнено мировым эфиром. С неподвижным эфиром физики пытались согласовать абсолютную систему отсчета. При этом для понимания большинства материальных явлений эфиру приходилось давать необычные свойства, иногда и противоречащие друг другу. Однако само создание специальной теории относительности вынудило физиков отказаться от идеи эфира, так как эта теория исходила из относительности массы, времени и длины, т.е. из зависимости их от системы отсчета. При рассмотрении электромагнитной картины мира материя, время и пространство могут существовать только вместе, и полностью зависят друг от друга. При этом время и пространство являются свойствами материальных тел.

Характерные свойства электромагнитной картины мира:

1. В пределах электромагнитной картины мира сложилась непрерывная (континуальная), полевая модель реальности. А сама материя рассматривалась как одно непрерывное поле с силовыми точечными центрами - волновыми движениями в нем и электрическими зарядами. Мир рассматривался как электродинамическая система, которая была построена из электрически заряженных частиц, которые взаимодействовали посредством электромагнитного поля.

2. Концепция Ньютона заменяется фарадеевским принципом. Фарадей утверждал, что каждые взаимодействия передаются полем от одной точки к другой, непрерывно и с конечной скоростью.

3. Кинетическая теория газов или статистическая механика появившаяся в середине XIX века, была основана на теории вероятности. Вероятность, случайность с этого промежутка времени нашли свое место в физике и были указаны в форме статистических законов. Статистический закон – это такой закон, который управляет поведением огромных совокупностей и в отношении отдельного объекта, он позволяет делать лишь выводы на основе вероятности о его поведении. Этот закон отражает диалектическую связь случайности и необходимости. И не исключает случайность, а рассматривает ее как форму проявления необходимости.

4. Игнорирование атомистической, дискретной природы вещества привело электродинамику Максвелла к целому ряду несоответствий, которые не возникают в созданной Лоренцом электронной теории или микроскопической электродинамики. Данная теория восстанавливает в правах электрические дискретные заряды и сохраняет поле как объективную реальность.

Электромагнитная картина мира может объяснить достаточно большой круг физических явлений, которые в той или иной мере не понятны с точки зрения предыдущей механической картины мира. Однако дальнейшее ее развитие показало ее ограниченность. Одна из самых главных проблем состояла в том, что континуальное понимание материи не согласовывалось с фактами, основанными на проведенных опытах, которые бы подтверждали дискретность ее свойств - действия, заряда, излучения. Оставалась еще нерешенной задача о соотношении поля и заряда, здесь не удавалось дать объяснение устойчивости атомов и их спектров, излучение абсолютно черного тела. Все это приводило к тому, что об относительном характере электромагнитной картины мира и необходимости ее замены новой физической картиной. Поэтому на замену ей пришла абсолютно новая квантово-релятивистская картина мира, которая объясняла дискретность механической картины мира и непрерывность электромагнитной картины мира.

Т Е Х Н О Л О Г И Ч Е С К И Й У Н И В Е Р С И Т Е Т

Имени К. Э. Ц И О Л К О В С К О Г О

Кафедра: Общая химия, физика и химия композиционных материалов

РЕФЕРАТ

Дисциплина: Концепция Современного Естествознания

Тема: Физическая картина мира

Студент: Какорин Павел Дмитриевич

Группа: 6МЕН-1ДБ-242

Руководитель: Качалина А.Л.

Москва, 2012 г

Физическая картина мира

Понятие физической картины мира

Познавая окружающий мир, человек создает в своем сознании его определенную модель - картину мира. На каждом этапе своего развития человечество по-разному представляет себе мир, в котором оно живет. Поэтому в истории человечества существовали различные картины мира: мифологическая, религиозная, научная и др. Кроме того, как уже было отмечено, каждая отдельная наука также может формировать собственную картину мира (физическую, химическую, биологическую и др.). Однако из всего многообразия картин мира, существующих в современной науке, самое широкое представление дает общая научная картина мира, описывающая природу, общество и человека.

Научная картина мира формируется на основе достижений естественных, общественных и гуманитарных наук, однако ее фундаментом, бесспорно, является естествознание. Значение естествознания в формировании научной картины мира настолько велико, что нередко научную картину миру сводят к естественно-научной, содержание которой составляют картины мира отдельных естественных наук.



Естественнонаучная картина мира представляет собой систематизированное и достоверное знание о природе, исторически сформировавшееся в ходе развития естествознания. В эту картину мира входят знания, полученные из всех естественных наук, включая их фундаментальные идеи и теории. В то же время история науки свидетельствует, что большую часть содержания естествознания составляют преимущественно физические знания. Именно физика была и остается наиболее развитой и систематизированной естественной наукой. Вклад других естественных наук в формирование научной картины мира был намного меньше. Поэтому, когда возникло мировоззрение европейской цивилизации, Нового времени и складывалась классическая естественнонаучная картина мира, закономерным было обращение к физике, ее концепциям и аргументам, во многом определившим эту картину. Степень разработанности физики была настолько велика, что она смогла создать собственную физическую картину мира, в отличие от других естественных наук, которые лишь в XX в. поставили перед собой эту задачу и смогли решить ее.

Поэтому, начиная разговор о наиболее важных и значимых научных концепциях в современном естествознании, мы начнем его с физики и картины мира, созданной этой наукой.

Физика - это наука, изучающая простейшие и вместе с тем наиболее общие закономерности природы, свойства и строение материи и законы ее движения. В любом явлении физика ищет то, что объединяет его со всеми другими явлениями природы. Поэтому понятия и законы физики фундаментальны, т.е. являются основополагающими для всего естествознания.

Само слово «физика» происходит от греческого - природа. Эта наука возникла еще в античности и первоначально охватывала всю совокупность знаний о природных явлениях. Иными словами, тогда физика была тождественна всему естествознанию. Лишь к эпохе эллинизма, по мере дифференциации знаний и методов исследования, из общей науки о природе выделились отдельные естественные науки, в том числе и физика.

В своей основе физика - экспериментальная наука: ее законы базируются на фактах, установленных опытным путем. Такой она стала, начиная с Нового времени. Но, помимо экспериментальной физики, различают и теоретическую физику, цель которой состоит в формулировании законов природы. Экспериментальная и теоретическая физика не могут существовать друг без друга.

В соответствии с многообразием исследуемых физических объектов, уровней организации и форм движения современная физика подразделяется на ряд дисциплин, так или иначе связанных друг с другом. В зависимости от изучаемых физических объектов физика делится на физику элементарных частиц, физику ядра, физику атомов и молекул, газов и жидкостей, твердого тела и плазмы. По критерию уровней организации материи выделяют физику микро-, макро- и мегамира. По характеру изучаемых процессов, явлений и форм движения (взаимодействия) различают механические, электромагнитные, квантовые и гравитационные явления, тепловые и термодинамические процессы и соответствующие им области физики: механику, электродинамику, квантовую физику, теорию гравитации, термодинамику и статистическую физику.

Кроме того, современная физика содержит небольшое количество фундаментальных теорий, охватывающих все разделы физического знания. Эти теории представляют собой совокупность наиболее важных знаний о характере физических процессов и явлений, приближенное, но наиболее полное отображение различных форм движения материи в природе.

Понятие «физическая картина мира* употребляется в естествознании давно, но лишь в последнее время оно стало рассматриваться не только как итог развития физического знания, но и как особый самостоятельный вид знания - самое общее теоретическое знание в физике, система понятий, принципов и гипотез, служащих исходной основой для построения теорий. Физическая картина мира, с одной стороны, обобщает все ранее полученные знания о природе, а с другой стороны, вводит в физику новые философские идеи и обусловленные ими понятия, принципы и гипотезы, которых до этого не было и которые коренным образом меняют основы физического теоретического знания. Иными словами, физическая картина мира рассматривается как физическая модель природы, включающая в себя фундаментальные физические и философские идеи, физические теории, наиболее общие понятия, принципы и методы познания, соответствующие определенному историческому этапу развития физики.

Развитие самой физики непосредственно связано с физической картиной мира, поскольку представляет собой процесс становления и смены различных ее типов. Постоянное развитие и замена одних картин мира другими, более адекватно отражающими структуру и свойства материи, есть процесс развития самой физической картины мира. Основой для выделения отдельных типов физической картины мира служит качественное изменение фундаментальных физических идей, являющихся базой для физической теории и наших представлений о структуре материи и формах ее существования. С изменения физической картины мира начинается новый этап в развитии физики с иной системой исходных понятий, принципов, гипотез и стиля мышления, с иными гносеологическими предпосылками. Переход от одного этапа к другому знаменует качественный скачок, революцию в физике, состоящую в крушении старой картины мира и появлении новой.

В пределах каждого отдельного этапа развитие физики идет эволюционным путем, без изменения основ картины мира. Оно состоит в реализации возможностей построения новых теорий, заложенных в данной картине мира. При этом она может эволюционировать, достраиваться, оставаясь в рамках определенных конкретно-физических представлений о мире. При изменении ключевых понятий картины мира происходит революция в физике. Ее результатом становится появление новой физической картины мира.

В основе объяснения явлений природы с точки зрения физики лежат фундаментальные физические понятия и принципы. К наиболее общим, фундаментальным понятиям физического описания природы относятся материя, движение, физическое взаимодействие, пространство и время, причинно-следственные связи, место и роль человека в мире.

Важнейшим из них является понятие материи. Поэтому революции в физике всегда связаны с изменением представлений о строении материи. В истории физики Нового времени это происходило дважды. В XIX в. был совершен переход от утвердившихся к XVII в. атомистических, корпускулярных представлений о материи к полевым (континуальным). В XX в. континуальные представления были заменены современными квантовыми. Поэтому можно говорить о трех последовательно сменявших друг друга физических картинах мира.

Первой в истории естествознания физической картиной мира была механическая картина мира, в рамках которой не могли найти объяснения электромагнитные явления, и поэтому она была дополнена электромагнитной картиной мира. Однако многочисленные необъяснимые физические явления, открытые в конце XIX в., показали ограниченность электромагнитной картины мира, что и привело к возникновению квантово-полевой картины мира.

Механическая картина мира

Становление механической картины мира происходило под влиянием метафизических материалистических представлений о материи и формах ее существования. Ее основу составили идеи и законы механики, которая в XVII в. была наиболее разработанным разделом физики. По сути, именно механика явилась первой фундаментальной физической теорией. Идеи, принципы и теории механики представляли собой совокупность наиболее существенных знаний о физических закономерностях, наиболее полно отражали физические процессы в природе. В широком смысле механика изучает механическое движение материальных тел и происходящее при этом взаимодействие между ними. Под механическим движением понимают изменение с течением времени взаимного положения тел или частиц в пространстве. Примерами механического движения в природе являются движение небесных тел, колебания земной коры, воздушные и морские течения и т.п. Происходящие в процессе механического движения взаимодействия представляют собой те действия тел друг на друга, в результате которых происходит изменение скоростей перемещения этих тел в пространстве или их деформация.

Важнейшими понятиями механики как фундаментальной физической теории стали материальная точка - тело, формы и размеры которого не существенны в данной задаче; абсолютно твердое тело - тело, расстояние между любыми точками которого остается неизменным, а его деформацией можно пренебречь. Оба вида материальных тел характеризуются с помощью следующих понятий: масса - мера количества вещества; вес - сила, с которой тело действует на опору. Масса всегда остается постоянной, вес же может меняться. Эти понятия выражаются через следующие физические величины: координаты, импульсы, энергию, силу.

Основу механической картины мира составил атомизм - теория, которая весь мир, включая человека, рассматривала как совокупность огромного числа неделимых материальных частиц - атомов. Они перемещались в пространстве и времени в соответствии с немногими законами механики. Материя - это вещество, состоящее из мельчайших, неделимых, абсолютно твердых движущихся частиц (атомов). Это и есть корпускулярное представление о материи.

Законы механики, которые регулировали как движение атомов, так и движение любых материальных тел, считались фундаментальными законами мироздания. Поэтому ключевым понятием механической картины мира было понятие движения, которое понималось как механическое перемещение. Тела обладают внутренним врожденным свойством двигаться равномерно и прямолинейно, а отклонения от этого движения связаны с действием на тело внешней силы (инерции). Единственной формой движения является механическое движение, т.е. изменение положения тела в пространстве с течением времени. Любое движение можно представить как сумму пространственных перемещений. Движение объяснялось на основе трех законов Ньютона. Все состояния механического движения тел по отношению ко времени оказываются в принципе одинаковыми, поскольку время считается обратимым. Закономерности более высоких форм движения материи должны сводиться к законам простейшей ее формы - механическому движению.

Все многообразие взаимодействий механическая картина мира сводила только к гравитационному, которое означало наличие сил притяжения между любыми телами; величина этих сил определялась законом всемирного тяготения. Поэтому, зная массу одного тела и силу гравитации, можно определить массу другого тела. Гравитационные силы являются универсальными, т.е. они действуют всегда и между любыми телами и сообщают любым телам одинаковое ускорение.

Решая проблему взаимодействия тел, Ньютон предложил принцип дальнодействия. Согласно этому принципу, взаимодействие между телами происходит мгновенно на любом расстоянии, без материальных посредников, т.е. промежуточная среда в передаче взаимодействия участия не принимает.

Концепция дальнодействия тесно связана с пониманием пространства и времени как особых сред, вмещающих взаимодействующие тела. Ньютон предложил концепцию абсолютного пространства и абсолютного времени. Абсолютное пространство пред ставлялось большим «черным ящиком», универсальным вместилищем всех материальных тел в природе. Но даже если бы все эти тела вдруг исчезли, абсолютное пространство все равно бы осталось. Аналогично, в образе текущей реки, представлялось и абсолютное время. Оно становилось универсальной длительностью всех процессов во Вселенной. И абсолютное пространство, и абсолютное время существуют совершенно независимо от материи. Таким образом, пространство, время и материя представляют три не зависящих друг от друга сущности.

Таким образом, в соответствии с механической картиной мира Вселенная представляла собой хорошо отлаженный механизм, действующий по законам строгой необходимости, в котором все предметы и явления связаны между собой жесткими причинно-следственными отношениями. В таком мире нет случайностей, она полностью исключалась из картины мира. Случайным было только то, причин чего мы пока не знали. Но поскольку мир рационален, а человек наделен разумом, то в конце концов он может получить полное и исчерпывающее знание о бытии. Такой жесткий детерминизм находил свое выражение в форме динамических законов.

Жизнь и разум в механической картине мира не обладали никакой качественной спецификой. Человек в этой картине мира рассматривался как природное тело в ряду других тел, и поэтому оставался необъяснимым в своих «невещественных» качествах. Поэтому присутствие человека в мире не меняло ничего. Если бы человек однажды исчез с лица земли, мир продолжал бы существовать как ни в чем не бывало. По сути дела, классическое естествознание не стремилось постичь человека. Подразумевалось, что мир природный, в котором нет ничего человеческого, можно описать объективно, и такое описание будет точной копией реальности. Рассмотрение человека как одного из винтиков хорошо отлаженной машины автоматически устраняло его из данной картины мира.

На основе механической картины мира в XVIII - начале XIX в. была разработана земная, небесная и молекулярная механика. Быстрыми темпами шло развитие техники. Это привело к абсолютизации механической картины мира, и она стала рассматриваться в качестве универсальной.

Развитие механической картины мира было обусловлено в основном развитием механики. Успех механики Ньютона в значительной мере способствовал абсолютизации ньютоновских представлений, что выразилось в попытках свести все многообразие явлений природы к механической форме движения материи. Такая точка зрения получила название механистического материализма (механицизм). Однако развитие физики показало несостоятельность такой методологии, поскольку описать тепловые, электрические и магнитные явления с помощью законов механики, а также движение атомов и молекул этих физических явлений оказалось невозможно. В результате в XIX в. в физике наступил кризис, который свидетельствовал, что физика нуждалась в существенном изменении своих взглядов на мир.

Оценивая механическую картину мира как один из этапов развития физической картины мира, необходимо иметь в виду, что с развитием науки основные положения механической картины мира не были просто отброшены. Развитие науки лишь раскрыло относительный характер механической картины мира. Несостоятельной оказалась не сама механическая картина мира, а ее исходная философская идея - механицизм. В недрах механической картины мира стали складываться элементы новой - электромагнитной - картины мира.

Электромагнитная картина мира

На протяжении XIX в. продолжались попытки объяснить электромагнитные явления в рамках механической картины мира. Но это оказалось невозможным: электромагнитные явления слишком отличались от механических процессов. Наибольший вклад в формирование электромагнитной картины мира внесли работы М. Фа-радея и Дж. Максвелла. После создания Максвеллом теории электромагнитного поля стало возможным говорить о появлении электромагнитной картины мира.

Свою теорию Максвелл разработал на основе открытого Фара-деем явления электромагнитной индукции. Проводя эксперименты с магнитной стрелкой, стремясь объяснить природу электрических и магнитных явлений, Фарадей пришел к выводу, что вращение магнитной стрелки обусловлено не электрическими зарядами, которые находятся в проводнике, а особым состоянием окружающей среды, которое возникало в месте нахождения магнитной стрелки. Это означало, что во взаимодействии тока с магнитной стрелкой активную роль играет окружающая проводник среда. В связи с этим он ввел понятие поля как множества магнитных силовых линий, пронизывающих пространство и способных определять и направлять (индуцировать) электрический ток. Это открытие привело Фа-радея к мысли о необходимости замены корпускулярных представлений о материи новыми континуальными, непрерывными.

Теория электромагнитного поля Максвелла сводится к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Так в физику была введена новая реальность - электромагнитное поле.

заряд, напряженность поля -

электромагнитной.

Кардинально изменились лишь представления о материи: корпускулярные идеи уступили место континуальным (полевым). Отныне совокупность неделимых атомов переставала быть конечным введена новая реальность - электромагнитное поле. Теория электромагнитного поля Максвелла ознаменовала собой начало нового этапа в физике. В соответствии с этой теорией мир стал представляться единой электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля.

Важнейшими понятиями новой теории являются: заряд, который может быть как положительным, так и отрицательным; напряженность поля - сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая сила, объединяющая электрическую и магнитную силы, называется электромагнитной. Считается, что электрические силы (поле) соответствуют покоящимся зарядам, магнитные силы (поле) - движущимся зарядам. Все многообразие этих сил и зарядов описывается системой уравнений классической электродинамики, известных как уравнения Максвелла.

Сущность уравнений классической электродинамики сводится к закону Кулона, который полностью эквивалентен закону всемирного тяготения Ньютона , а также к утверждениям о том,

что магнитные силовые линии непрерывны и не имеют ни начала, ни конца; магнитных зарядов не существует; электрическое поле создается переменным магнитным полем; магнитное поле может создаваться как электрическим током, так и переменным электрическим полем.

Уравнения Максвелла записываются в терминах теории поля, что позволяет единообразно описать стационарные и нестационарные электромагнитные явления, связать пространственные и временные изменения электрического и магнитного полей. Эти уравнения имеют решения, которые описывают электромагнитные волны, распространяющиеся со скоростью света. Из них можно получить решения для совокупности всех волн, которые могут распространяться в любом направлении в пространстве.

Таким образом, были выдвинуты новые физические и философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира. Разумеется, нельзя сказать, что эти изменения были кардинальными, так как они осуществились в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

Кардинально изменились лишь представления о материи: корпускулярные идеи уступили место континуальным (полевым). Отныне совокупность неделимых атомов переставала быть конечным

пределом делимости материи. В качестве такового принималось единое абсолютно непрерывное бесконечное поле с силовыми точечными центрами - электрическими зарядами и волновыми движениями в нем. Согласно электромагнитной картине мира, материя существует в двух видах - вещество и поле. Они строго разделены, и их превращение друг в друга невозможно. Главным из них является поле, а значит, основным свойством материи является непрерывность в противовес дискретности. Электромагнитное поле распространяется в виде поперечных электромагнитных волн со скоростью света, захватывая постоянно новые области пространства. Заполнение пространства электромагнитным полем нельзя описать на основе законов Ньютона, так как механика не понимает этого механизма. В электромагнетизме изменение одной сущности (магнитного поля) приводит к появлению другой сущности (электрического поля). Обе эти сущности образуют в совокупности электромагнитное поле. В механике же одно материальное явление не зависит от изменения другого, и вместе они не создают единой сущности.

Расширилось также и понятие движения. Оно стало пониматься не только как простое механическое перемещение, но и как распространение колебаний в поле. Соответственно законы механики Ньютона уступили свое господствующее место законам электродинамики Максвелла.

Новая картина мира требовала нового решения проблемы физического взаимодействия. Ньютоновский принцип дальнодействия заменялся фарадеевским принципом близкодействия, который утверждал, что любые взаимодействия передаются полем от точки к точке непрерывно и с конечной скоростью.

Концепция абсолютного пространства и абсолютного времени Ньютона не подходила к новым полевым представлениям о материи, так как поля не имеют четко очерченных границ и перекрывают друг друга. Кроме того, поля - это абсолютно непрерывная материя, поэтому пустого пространства просто нет. Так же и время должно быть неразрывно связано с процессами, происходящими в поле. Было ясно, что пространство и время нельзя рассматривать как самостоятельные, независимые от материи сущности. Но инерция мышления и сила привычки были столь велики, что еще долго ученые предпочитали верить в существование абсолютного пространства и абсолютного времени.

Первоначально в понимании пространства и времени электромагнитная картина мира исходила из убеждения, что абсолютное пустое пространство заполнено мировым эфиром. С неподвижным эфиром ученые пытались связать абсолютную систему отсчета. При этом для объяснения многих материальных явлений эфиру приходилось приписывать необычные свойства, зачастую противоречащие друг другу. Однако создание специальной теории относитель ности вынудило ученых отказаться от идеи эфира, поскольку данная теория исходила из относительности длины, времени и массы, т.е. из их зависимости от системы отсчета. Поэтому лишь к началу XX в. абсолютная концепция пространства и времени уступила место реляционной (относительной) концепции пространства и времени, в соответствии с которой пространство, время и материя существуют только вместе, полностью зависят друг от друга. При этом пространство и время являются свойствами материальных тел.

Электромагнитная картина мира произвела настоящий переворот в физике. Она базировалась на идеях непрерывности материи, материального электрического поля, неразрывности материи и движения, связи пространства и времени как между собой, так и с движущейся материей. Новое понимание сущности материи поставило ученых перед необходимостью пересмотра и переоценки этих основополагающих качеств материи.

Законы электродинамики, как и законы классической механики, все еще однозначно предопределяли события, которые они описывали, поэтому случайность пытались исключить из физической картины мира. Однако в середине XIX в. впервые появилась фундаментальная физическая теория нового типа, которая основывалась на теории вероятности. Это была кинетическая теория газов, или статистическая механика. Случайность, вероятность наконец-то нашли свое место в физике и были отражены в форме так называемых статистических законов. Правда, пока физики не оставляли надежды найти за вероятностными характеристиками четкие однозначные законы, подобные законам Ньютона, и считали вновь созданную теорию промежуточным вариантом, временной мерой. Тем не менее, прогресс был налицо: в электромагнитную картину мира вошло понятие вероятности.

Не менялось в электромагнитной картине мира и представление о месте и роли человека во Вселенной. Его появление считалось лишь капризом природы. Эти взгляды еще более упрочились после появления дарвиновской теории эволюции. Идеи о качественной специфике жизни и разума с большим трудом прокладывали себе путь в научном мировоззрении.

Электромагнитная картина мира объяснила большой круг физических явлений, непонятных с точки зрения прежней механической картины мира. Однако дальнейшее ее развитие показало, что она имеет ограниченный характер. Главная проблема состояла в том, что континуальное понимание материи не согласовывалось с опытными фактами, подтверждающими дискретность ее многих свойств - заряда, излучения, действия. Оставалась также нерешенной проблема соотношения между полем и зарядом, не удавалось объяснить устойчивость атомов и их спектры, излучение абсолютно черного тела. Все это свидетельствовало об относительном характере электромагнитной картины мира и необходимости ее замены новой физической картиной мира. Поэтому на смену ей пришла новая - квантово-полевая - картина мира, объединившая в себе дискретность механической картины мира и непрерывность электромагнитной картины мира.

Раздел 1. Механическая научная картина мира……………………..3-5

Раздел 2. Электромагнитная научная картина мира..……………….6-8

Раздел 3 Квантво-релятивистская научная картина мира…………..9-10

Выводы…………………………………………………………………11-13

Лтература……………………………………………………………....14

Раздел 1 . Механическая научная картина мира.

В истории науки научные картины мира не оставались неизменными, а сменяли друг друга, таким образом, можно говорить об эволюции научных картин мира. Наиболее наглядной представляется эволюция физических картин мира: натурфилософской – до 16-17вв, механистической – до второй половины 19 в.,термодинамической (в рамках механистической теории) в 19 в, релятивистской и квантово-механической в 20-м веке.

Механическая картина мира складывалась под влиянием материалистических представлений о материи и формах ее существования. Основополагающими идеями этой картины Мира являются классических атомизм, восходящий к Демокриту и так называемый механицизм. Само становление механической картины справедливо связывают с именем Галилео Галилея, впервые применившего для исследования природы экспериментальный метод вместе с измерениями исследуемых величин и последующей математической обработкой результатов. Этот метод принципиально отличался от ранее существовавшего натурфилософского способа, при котором для объяснения явлений природы придумывались априорные (

Законы движения планет, открытые Иоганном Кеплером, в свою очередь, свидетельствовали о том, что между движениями земных и небесных тел не существует принципиальной разницы (как полагал Аристотель), поскольку все они подчиняются определенным естественным законам.

Ядром механической картины мира является механика Ньютона (классическая механика).Формирование классической механики и основанной на ней механической картины мира происходило по 2-м направлениям:

1) обощения полученных ранее результатов и, прежде всего, законов свободного падения тел, открытых Галилеем, а также законов движения планет, сформулированных Кеплером;

2) создания методов для количественного анализа механического движения в целом.

В первой половине 19 в. наряду с теоретической механикой выделяется и прикладная (техническая) механика, добившаяся больших успехов в решении прикладных задач. Все это приводило к мысли о всесилии механики и к стремлению создать теорию теплоты и электричества так же на основе механических представлений. Наиболее четко эта мысль была выражена в 1847 г. физиком Германом Гельмгольцем в его докладе “О сохранении силы”: “Окончательная задача физических наук заключается в том, чтобы

явления природы свести к неизменным притягательным и отталкивающим силам, величина которых зависит от расстояния”

В любой физической теории присутствует довольно много понятий, но среди них есть основные, в которых проявляется специфика этой теории, ее базис, мировоззренческая сущность. К таким понятиям относят так называемые фундаментальные понятия, а именно:

Материя,

Движение,

Пространство,

Взаимодействие.

Каждое из этих понятий не может существовать без четырех остальных.

Важнейшими принципами механической картины мира являются:

Принцип относительности,

Принцип дальнодействия,

Принцип причинности.

Принцип относительности Галилея. Принцип относительности Галилея утверждает, что все инерциальные системы отсчета (ИСО) с точки зрения механики совершенно равноправны (эквивалентны). Переход от одной ИСО к другой осуществляется на основе преобразований Галилея

Принцип дальнодействия. В механичечкой картине мира было принято, что взаимодействие передается мгновенно, и промежуточная среда в передаче взаимодействия участия не принимает. Это положение и было названо принципом дальнодействия.

Принцип причинности. Как уже было сказано, в механической картине мира все многообразие явлений природы к механической форме движения материи (механистический материализм, механицизм). С другой стороны известно, что беспричинных явлений нет, что всегда можно (принципиально) выделить причину и следствие. Причина и следствие взаимосвязаны, влияют друг на друга. Следствие одной причины может стать причиной другого следствия. Эту мысль развивал математик Лаплас, утверждая следующее: “Всякое имеющее место явление связано с предшествующим на основании того очевидного принципа, что оно не может возникнуть без производящей причины. Противоположное мнение есть иллюзия ума.” т.е. Лаплас полагал, что все связи между явлениями осуществляется на основе однозначных законов. Это учение обусловленности одного явления другим, об их однозначной закономерной связи вошло в физику как так называемый лапласовский детерминизм (детерминизм – предопределенность).

Раздел 2. Электромагнитная картина мира .

Наибольший вклад в формирование данного представления о мире внесли работы М. Фарадея и Д. Максвелла. После создания последним на основе открытого Фарадеем явления электромагнитной индукции теории электромагнитного поля стало возможным говорить о появлении электромагнитной картины мира.

Теория электромагнитного поля Максвелла ознаменовала собой начало нового этапа в физике. В соответствии с ней мир стал представляться единой электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля.

Важнейшими понятиями новой теории являются: заряд, который может быть какположительным, так и отрицательным; напряженность поля - сила, которая действовала бы на тело, несущее единичный заряд, если бы оно находилось в рассматриваемой точке.

Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая сила, объединяющая электрическую (покоящиеся заряды) и магнитную (движущиеся заряды) силы, называется электромагнитной. Все многообразие этих сил и зарядов описывается системой уравнений классической электродинамики. Они известны как уравнения Максвелла. Это - закон Ш. Кулона, который полностью эквивалентен закону всемирного тяготения Ньютона; магнитные силовые линии непрерывны и не имеют ни начала, ни конца, магнитных зарядов не существует; электрическое поле создается переменным магнитным полем; магнитное поле может создаваться как электрическим током, так и переменным электрическим полем.

Таким образом, были выдвинуты новые физические и философские взгляды на материю, пространство, время и силы, во многом изменявшие прежнюю механическую картину мира. Но нельзя сказать, что эти изменения были кардинальны, так как они осуществились в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

Расширилось также и понятие движения. Оно стало пониматься не только как простое механическое перемещение, но и как распространение колебаний в поле. Соответственно, законы механики Ньютона уступили свое господствующее место законам электродинамики Максвелла.

Электромагнитная картина мира требовала нового решения проблемы физического взаимодействия. Ньютоновский принцип дальнодействия заменялся фарадеевским принципом близкодействия, который утверждал, что любые взаимодействия передаются полем от точки к точке, непрерывно и с конечной скоростью.

Случайность все еще пытались исключить из физической картины мира. Но в середине XIX в. впервые появилась фундаментальная физическая теория нового типа, которая основывалась на теории вероятности. Это была кинетическая теория газов, или статистическая механика. Случайность, вероятность наконец-то нашли свое место в физике и были отражены в форме так называемых статистических законов. Правда, пока физики не оставляли надежды найти за вероятностными характеристиками четкие однозначные законы, подобные законам Ньютона, и считали вновь созданную теорию промежуточным вариантом, временной мерой. Тем не менее, прогресс был налицо: в электромагнитную картину мира вошло понятие вероятности.

Не менялось в электромагнитной картине мира представление о месте и роли человека во Вселенной. Его появление считалось лишь капризом природы.

Электромагнитная картина мира объяснила большой круг физических явлений, непонятных с точки зрения прежнего механического представления о мире. Однако дальнейшее ее развитие показало, что она имеет относительный характер. Поэтому на смену ей пришла новая - квантово-полевая - картина мира, объединившая в себе дискретность механической картины мира и непрерывность электромагнитной картины мира.нные однозначные связи между явлениями

Раздел 3. Квантово-полевая картина мира . В основе современной квантово-полевой картины мира лежит новая физическая теория - квантовая механика, описывающая состояние и движение микрочастиц (элементарных частиц, атомов, молекул, атомных ядер) и их систем, а также связь величин, характеризующих частицы и системы, с физическими величинами, непосредственно измеряемыми на опыте. Законы квантовой механики составляют фундамент изучения строения вещества. Они позволяют выяснить строение атомов, установить природу химической связи, объяснить периодическую систему элементов, изучить свойства элементарных частиц.

В соответствии с квантово-полевой картиной мира любой микрообъект, обладая волновыми и корпускулярными свойствами, не имеет определенной траектории движения и не может иметь определенных координат и скорости (импульса). В квантовой механике, в отличие от классической физики, поведение каждой микрочастицы подчиняется нединамическим, а статистическим законам.

Общая картина реальности в квантово-полевой картине мира как бы двупланова: с одной стороны, в нее входят характеристики исследуемого объекта, а с другой - условия наблюдения, от которых зависит определенность этих характеристик. Это означает, что картина реальности в современной физике является не только картиной объекта, но и картиной процесса его познания.

Ушли в прошлое представления о неизменности материи, о возможности достичь конечного предела ее делимости.

Кардинально меняется представление о движении, которое становится лишь частным случаем фундаментальных физических взаимодействий, которых известно четыре вида: гравитационное, электромагнитное, сильное и слабое.

Спецификой квантово-полевых представлений о закономерности и причинности является то, что они всегда выступают в вероятностной форме, в виде так называемых статистических законов, которые способствуют более глубокому уровню познания природных закономерностей. Таким образом, оказалось, что в основе мира лежат случайность, вероятность.

Также новая картина мира впервые включила в себя наблюдателя, от присутствия которого зависели получаемые результаты исследований. Более того, был сформулирован так называемый антропный принцип, который утверждает, что наш мир таков, каков он есть, только благодаря существованию человека. Отныне появление человека считается закономерным результатом эволюции Вселенной.

Выводы.

Каждая из рассматриваемых картин мира интерпритирует понятия; материя пространство и время по разному.

Согласно механической картине мира – это вещество, состоящее из мельчайших, далее неделимых, абсолютно твердых движущихся частиц – атомов, т.е. в МКМ были приняты дискретные (дискретный – “прерывный”), или, другими словами, корпускулярные представления о материи. Вот почему важнейшими понятиями в механике были понятия материальной точки и абсолютно твердого тела (Материальная точка – тело, размерами которого в условиях данной задачи можно пренебречь, абсолютно твердое тело – система материальных точек, расстояние между которыми всегда остается неизменным).

Пространство. Вспомним, что Аристотель отрицал существование пустого пространства, связывая пространство, время и движение. Атомисты 18-19 вв. наоборот, признавали атомы и пустое пространство, в котором атомы движутся. Ньютон, впрочем, рассматривал два вида пространства:

· относительное, с которым люди знакомятся путем измерения пространственных отношения между телами;

· абсолютное, которое по самой своей сущности безотносительно к чему бы то ни было и внешнему и остается всегда одинаковым и неподвижным; т.е. абсолютное пространство – это пустое вместилище тел, оно не связано со временем, и его свойства не зависят от наличия или отсутствия в нем материальных объектов. Пространство в Ньютоновской механике является

Впоследствии А. Эйнштейн, анализируя понятия абсолютного пространства и абсолютного времени, писал: “Если бы материя исчезла, то осталось бы только пространство и время (своего рода сцена, на которой разыгрываются физические явления)”. В этом случае пространство и время не содержат никаких особых “меток”, от которых можно было бы вести отсчет и ответить на вопросы “Где?” и “Когда?” Поэтому для изучения в них материальных объектов необходимо вводить систему отсчета (систему координат и часы). Система отсчета, жестко связанная с абсолютным пространством, называется инерциальной. Пространство в Ньютоновской механике является:

Трехмерным (положение любой точки можно описать тремя координатами),

Непрерывным,

Бесконечным,

Изотропным (свойства пространства не зависят от направления).

Пространственные отношения в МКМ описываются геометрией Евклида.

Время.Ньютон рассматривал два вида времени, аналогично пространству: относительное и абсолютное. Относительное время люди познают в процессе измерений, а абсолютное (истинное, математическое время) само по себе и по своей сущности, без всякого отношения к чему-либо внешнему, протекает равномерно и иначе называется длительностью. Таким образом, и время у Ньютона, аналогично пространству – пустое вместилище событий, не зависящее ни от чего. Время течет в одном направлении – от прошлого к будущему.

В свою очередь,в квантово-полевой картине мира окончательно утверждаются представления об относительности пространства и времени, их зависимости от материи. Они перестают быть независимыми друг от друга и согласно теории относительности сливаются в едином четырехмерном пространстве-времени, которое не существует вне материальных тел.

В электромагнитной картине мира кардинально изменились представления о материи..

Они строго разделены, и их превращение друг в друга невозможно. Главным из них является поле, а значит, основным свойством материи является непрерывность в противовес дискретности.

Электромагнитная картина мира произвела настоящий переворот в физике. Она базировалась на идеях непрерывности материи, материального электрического поля, неразрывности материи и движения, связи пространства и времени как между собой, так и с движущейся материей. Новое понимание сущности материи поставило ученых перед необходимостью пересмотра и переоценки этих основополагающих качеств материи.

Литература.

1)Садохин А.П. Концепции современного естествознания: учебное пособие. М.: Омега –Л, 2008. -239 с.

2)Липовко П.О. Концепции современного естествознания. Учебник для вузов. Ростов н/Д: Феникс, 2004. - 512 с.

Технической революции. Квантово -релятивистская научная картина мира стала... механический детерминизм, абсолютно исключающий элемент случайного из картины мира ...

  • Современная научная картина мира (2)

    Реферат >> Биология

    ... механическая картина мира , которая сменилась релятивистской картиной мира . Первым шагом на пути построения новой научной физической картины мира ... . Первоначально квантовая механика создавалась... теория слабых и электромагнитных взаимодействий. Предпринимается...

  • Предмет философии. Религиозная, научная и философская картины мира

    Реферат >> Философия

    ... Научная картина мира основана на опыте, доказательстве. Она постоянно меняется. Философская картина мира , также как и научная ... простого механического перемещения... , разделяется электромагнитное и слабое... классической, релятивистской и квантовой механики). ...

  • Научная революция (2)

    Реферат >> Биология

    Дополнили механистическую картину мира электромагнитной . Электрические и... картины реальности, не сводимые к механической картине мира ; объект понимается в соответствии с научной ... релятивистской и квантовой теорий в физике, становление генетики, квантовой ...

  • Электромагнитная картина мира начала формироваться во второй половине XIX в. на основе исследований в области электромагнетизма. Основную роль здесь сыграли исследования М. Фарадея и Д. Максвелла, которые ввели понятие физического поля. В процессе формирования этого понятия на смену механической модели эфира пришла электромагнитная модель: электрическое, магнитное и электромагнитные поля трактовались первоначально как разные "состояния" эфира. Впоследствии необходимость в эфире отпала. Пришло понимание того, что электромагнитное поле само есть определенный вид материи и для его распространения не требуется какая-то особая среда-эфир.

    Электромагнитная картина мира продолжала формироваться в течение трех десятилетий XX в. Она использовала не только учение о магнетизме и достижения атомистики, но также и некоторые идеи современной физики (теории относительности и квантовой механики). После того как объектом изучения физики наряду с веществом стали разнообразные поля, картина мира приобрела более сложный характер, но все равно это была картина классической физики.

    Основные ее черты следующие. Согласно этой картине материя существует в двух видах - веществе и поле, между которыми имеется непроходимая грань: вещество не превращается в поле и наоборот. Известны два вида поля - электромагнитное и гравитационное, соответственно - два вида фундаментальных взаимодействий. Поля, в отличие от вещества, непрерывно распределяются в пространстве. Электромагнитное взаимодействие объясняет не только электрические и магнитные явления, но и другие - оптические, химические, тепловые. Теперь все стремятся свести к электромагнетизму. Вне сферы господства электромагнетизма остается лишь тяготение.

    В качестве элементарных "кирпичиков", из которых состоит вся материя, рассматриваются три частицы - электрон, протон и фотон. Фотоны - кванты электромагнитного поля. Корпускулярно- волновой дуализм "примиряет" волновую природу поля с корпускулярной, т.е. при рассмотрении электромагнитного поля используются, наряду с волновыми, и корпускулярные (фотонные) представления. Элементарные "кирпичики" вещества - электроны и протоны. Вещество состоит из молекул, молекулы из атомов, атом имеет массивное ядро и электронную оболочку. Ядро состоит из протонов. Силы, действующие в веществе, сводились к электромагнитным. Эти силы отвечают за межмолекулярные связи и связи между атомами в молекуле; они удерживают электроны атомной оболочки вблизи ядра; они же обеспечивают прочность атомного ядра (что оказалось неверным). Электрон и протон - стабильные частицы, поэтому атомы и их ядра тоже стабильны. Картина, на первый взгляд, выглядела безупречно. Но в эти рамки не вписывались такие, как считалось тогда, "мелочи", например, радиоактивность и др. Скоро выяснилось, что эти "мелочи" являются принципиальными. Именно они и привели к "краху" электромагнитной картины мира.

    Электромагнитная картина мира представляла огромный шаг вперед в познании мира. Многие ее детали сохранились и в современной естественно-научной картине: понятие физического поля, электромагнитная природа сил, отвечающих за различные явления в веществе (но не в самих атомах), ядерная модель атома, дуализм (двойственность) корпускулярных и волновых свойств материи и др. Но и в этой картине мира также господствуют однозначные причинно-следственные связи, все таким же образом жестко предопределено. Вероятностные физические закономерности не признаются фундаментальными и поэтому не включаются и в нее. Эти вероятности относили к коллективам молекул, а сами молекулы все равно следовали однозначным ньютоновским законам. Не менялись представления о месте и роли человека во Вселенной. Таким образом, и для электромагнитной картины мира также характерна метафизичность мышления, где все четко разграничено, внутренние противоречия отсутствуют.

    Лекции 7-9

    ТЕМА: ЭВОЛЮЦИЯ ФИЗИЧЕСКИХ КАРТИН МИРА, ч. III

    1. Электромагнитная картина мира 1

    1.1 Формирование понятия электромагнитного поля 1

    как новой физической реальности 1

    1.2. Специальная теория относительности 2

    1.3 Общая теория относительности. 4

    1.4 Основные понятия и принципы ЭМКМ 5

    2. Квантово-полевая картина мира 6

    2.1 Формирование идеи квантования физических величин 6

    2.2 Корпускулярно-волновой дуализм света и вещества 7

    2.3 Основные понятия и принципы КПКМ 8

    1. Электромагнитная картина мира

    18-й век, ознаменовавшийся становлением МКМ, фактически положил начало и систематическим исследованиям электрических явлений. Так было установлено, что одноименные заряды отталкиваются, появился простейший прибор – электроскоп. В середине 18 в. была установлена электрическая природа молнии (исследования Б.Франклина, М. Ломоносова, Г. Рихмана, причем заслуги Франклина следует отметить особо: он является изобретателем молниеотвода; считается, что именно Франклин предложил обозначения + и – для зарядов ).

    В 1759 г. английский естествоиспытатель Р.Симмер сделал заключение о том, что в обычном состоянии любое тело содержит равное количество разноименных зарядов, взаимно нейтрализующих друг друга. При электризации происходит их перераспределение.

    В конце 19-го, начале 20-го века опытным путем было установлено, что электрический заряд состоит из целого числа элементарных зарядов е=1,610 -19 Кл. Это наименьший существующий в природе заряд. В 1897 г. Дж. Томсоном была открыта и наименьшая устойчивая частица, являющаяся носителем элементарного отрицательного заряда (электрон, имеющий массуmo e =9,110 -31). Таким образом, электрический заряд является дискретным, т.е. состоящим из отдельных элементарных порцийq=ne, гдеn– целое число.

    В результате многочисленных исследований электрических явлений, предпринятых в 18-19 вв. был получен ряд важнейших законов (закон сохранения точечного заряда, закон взаимодействия точечных зарядов, или закон Кулона, открытие Эрстедом магнитного поля у проводника с током, законы Ома, Джоуля-Ленца). А.М.Ампер создал новую науку об электричестве – электродинамику, а экспериментальные исследования М.Фарадея, в результате которых был открыт закон электромагнитной индукции, привели его к идее существования электромагнитных волн.

    1.1 Формирование понятия электромагнитного поля как новой физической реальности

    Одним из первых, кто оценил работы Фарадея и его открытия, был Д.Максвелл, который развил идеи Фарадея, разработав в 1865 г. теорию электромагнитного поля, которая значительно расширила взгляды физиков на материю и привела к созданию электромагнитной картины мира (ЭМКМ).

    Теорию поля Д. Максвелл разрабатывает в своих трудах «О физических линиях силы» (1861-1865) и «Динамическая теория поля (1864-1865). В последней работе и была дана система знаменитых уравнений, которые (по словам Герца) составляют суть теории Максвелла. Эта суть сводилась к тому, что изменяющееся магнитное поле создает не только в окружающих телах, но и в вакууме вихревое электрическое поле, которое, в свою очередь, вызывает появление магнитного поля. Таким образом, в физику была введенановая реальность – электромагнитное поле. Это ознаменовало начало нового этапа в физике - этапа, на котором электромагнитное поле стало реальностью,материальным носителем взаимодействия.

    Мир стал представляться электродинамической системой, построенной из электрически заряженных частиц, взаимодействующих посредством электромагнитного поля. (Действительно, вспомним, что в МКМ господствовал принцип дальнодействия, согласно которому действие различного рода сил передается мгновенно, без участия среды.)

    Система уравнений для электрических и магнитных полей, разработанная Максвеллом, состоит из 4-х уравнений, которые эквивалентны 4-м утверждениям.

    Уравнение

    Утверждение

    div E q

    Электрическое поле, соответствующее какому-либо распределению заряда, определяется из закона Кулона

    div H = 0

    Магнитные заряды не существуют

    Переменное магнитное поле возбуждает электрический ток

    Магнитное поле возбуждается токами и переменными электрическими полями

    Анализируя свои уравнения, Максвелл пришел к выводу, что должны существовать электромагнитные волны, причем скорость их распространения должна равняться скорости света. Отсюда вывод: свет – разновидность электромагнитных волн. На основе своей теории Максвелл предсказал существование давления, оказываемого электромагнитной волной, а, следовательно, и светом, что было блестяще доказано экспериментально в 1906 г. П.Н. Лебедевым.

    Вершиной научного творчества Максвелла явился «Трактат по электричеству и магнетизму».

    Развитие корпускулярно-континуальных представлений в трудах Максвелла. Развивая теорию электромагнитного поля, Максвелл не отвергал и дискретность материи. Он писал: «Даже атом, когда мы приписываем ему способность вращаться, можно представлять состоящим из многих элементарных частиц». Это было сказано в 1873 г. задолго до открытия электрона. Таким образом, Максвелл не отдавал предпочтения ни дискретности, ни непрерывности материи, допуская возможность и того и другого.

    Разработав ЭМКМ, Максвелл завершил картину мира классической физики («начало конца классической физики»). Теория Максвелла является предшественницей электронной теории Лоренца и специальной теории относительности А.Эйнштейна.

    error: Content is protected !!