Первое начало термодинамики работа. Первое начало термодинамики. Внутренняя энергия, теплота. Работа газа при расширении. Связь энергии Гиббса со свободной энергией

Простая формулировка первого закона термодинамики может звучать примерно так: изменение внутренней энергии той или иной системы возможно исключительно при внешнем воздействии. То есть другими словами, чтобы в системе произошли какие-то изменения необходимо приложить определенные усилия извне. В народной мудрости своеобразным выражением первого закона термодинамики могут служить пословицы – «под лежачий камень вода не течет», «без труда не вытащишь рыбку из пруда» и прочая. То есть на примере пословицы про рыбку и труд, можно представить, что рыбка и есть наша условно закрытая система, в ней не произойдет никаких изменений (рыбка сама себя не вытащит из пруда) без нашего внешнего воздействия и участия (труда).

Интересный факт: именно первый закон термодинамики устанавливает, почему потерпели неудачу все многочисленные попытки ученых, исследователей, изобретателей изобрести «вечный двигатель», ведь его существование является абсолютно невозможным согласно этому самому закону, почему, смотрите абзац выше.

В начале нашей статьи было максимального простое определение первого закона термодинамики, в действительности в академической науке существует целых четыре формулировки сути данного закона:

  • Энергия ни откуда не появляется и ни куда не пропадает, она лишь переходит из одного вида в другой (закон сохранения энергии).
  • Количество теплоты, полученной системой, идет на совершение ее работы против внешних сил и изменение внутренней энергии.
  • Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданной системе, и не зависит от способа, которым осуществляется этот переход.
  • Изменение внутренней энергии неизолированной термодинамической системы равно разности между количеством теплоты, переданной системе, и работой, совершенной системой над внешними силами.

Формула первого закона термодинамики

Формулу первого закона термодинамики можно записать таким образом:

Количество теплоты Q, передаваемое системе равно суме изменения ее внутренней энергии ΔU и работы A.

Процессы первого закона термодинамики

Также первый закон термодинамики имеет свои нюансы в зависимости от проходящих термодинамических процессов, которые могут быть изохронными и изобарными, и ниже мы детально опишем о каждом из них.

Первый закон термодинамики для изохорного процесса

Изохорным процессом в термодинамике называют процесс, происходящий при постоянном объеме. То есть, если будь-то в газе или жидкости нагреть вещество в сосуде, произойдет изохорный процесс, так как объем вещества останется неизменным. Это условие имеет влияние и на первый закон термодинамики, проходящий при изохорном процессе.

В изохорном процессе объем V является константой, следовательно, газ работы не совершает A = 0

Из этого выходит следующая формула:

Q = ΔU = U (T2) – U (T1).

Здесь U (T1) и U (T2) – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры (закон Джоуля). При изохорном нагревании тепло поглощается газом (Q > 0), и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам (Q < 0).

Первый закон термодинамики для изобарного процесса

Аналогично изобарным процессом называется термодинамический процесс, происходящий в системе при постоянном и массе газа. Следовательно, в изобарном процессе (p = const) работа, совершаемая газом, выражается следующим уравнением первого закона термодинамики:

A = p (V2 – V1) = p ΔV.

Изобарный первый закон термодинамики дает:

Q = U (T2) – U (T1) + p (V2 – V1) = ΔU + p ΔV. При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

Применение первого закона термодинамики

Первый закон термодинамике имеет практическое применение к различным процессам в физике, например, позволяет вычислить идеальные параметры газа при разнообразных тепловых и механических процессах. Помимо сугубо практичного применение можно этому закону найти применение и философское ведь что ни говорите, но первый закон термодинамики является выражением одного из самых общих законов природы – закона сохранения энергии. Еще Еклезиаст писал, что ничто ни откуда не появляется и никуда не уходит, все пребывает вечно, постоянно трансформируясь, в этом и кроется вся суть первого закона термодинамики.

Первый закон термодинамики, видео

И в завершение нашей статьи вашему вниманию образовательное видео о первом законе термодинамике и внутренней энергии.

(как и энергию).

Первое начало термодинамики было сформулировано немецким ученым Ю. Л. Манером в 1842 г. и подтверждено экспериментально английским ученым Дж. Джоулем в 1843 г.

Формулируется так:

Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты , переданного системе:

ΔU = A + Q ,

где ΔU — изменение внутренней энергии, A — работа внешних сил, Q — количество теплоты, переданной системе.

Из (ΔU = A + Q ) следует закон сохранения внутренней энергии . Если систему изолировать от вне-шних воздействий, то A = 0 и Q = 0 , а следовательно, и ΔU = 0 .

При любых процессах, происходящих в изолированной системе, ее внутренняя энергия остается постоянной.

Если работу совершает система, а не внешние силы, то уравнение (ΔU = A + Q ) записывается в виде:

где A" — работа, совершаемая системой (A" = -A ).

Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.

Первое начало термодинамики может быть сформулировано как невозможность существования вечного двигателя первого рода, который совершал бы работу, не черпая энергию из какого-либо источника (т. е. только за счет внутренней энергии).

Действительно, если к телу не поступает теплота (Q - 0 ), то работа A" , согласно уравнению , совершается только за счет убыли внутренней энергии А" = -ΔU . После того, как запас энергии окажется исчерпанным, двигатель перестает работать.

Следует помнить, что как работа , так и количество теплоты, являются характеристиками процесса изменения внутренней энергии, поэтому нельзя говорить, что в системе содержится опреде-ленное количество теплоты или работы. Система в любом состоянии обладает лишь определенной внутренней энергией.

Применение первого закона термодинамики к различным процессам.

Рассмотрим применение первого закона термодинамики к различным термодинамическим процессам .

Изохорный процесс.

Зависимость р(Т) на термодинамической диаграмме изображается изохо рой .

Изохорный (изохорический) процесс — термодинамический процесс, происходящий в систе-ме при постоянном объеме.

Изохорный процесс можно осуществить в газах и жидкостях, заключенных в сосуд с постоянным объемом.

При изохорном процессе объем газа не меняется (ΔV= 0 ), и, согласно первому началу термоди-намики ,

ΔU = Q ,

т. е. изменение внутренней энергии равно количеству переданного тепла, т. к. работа (А = рΔV =0 ) газом не совершается.

Если газ нагревается, то Q > 0 и ΔU > 0 , его внутренняя энергия увеличивается. При охлаждении газа Q < 0 и ΔU < 0 , внутренняя энергия уменьшается.

Изотермический процесс.

Изотермический процесс графически изображается изотермой .

Изотермический процесс — это термодинамический процесс, про-исходящий в системе при постоянной температуре.

Поскольку при изотермическом процессе внутренняя энергия газа не меняется, см. формулу , (Т = const ), то все переданное газу количество теплоты идет на совершение работы:

При получении газом теплоты (Q > 0 ) он совершает положительную работу (A" > 0 ). Если газ отдает тепло окружающей среде Q < 0 и A" < 0 . В этом случае над газом совершается работа внешними силами. Для внешних сил работа положительна. Геометрически работа при изотермичес-ком процессе определяется площадью под кривой p(V) .

Изобарный процесс.

Изобарный процесс на термодинамической диаграмме изображается изобарой .

Изобарный (изобарический) процесс — термодинамический процесс, происходящий в системе с постоянным давлением р .

Примером изобарного процесса является расширение газа в цилиндре со свободно ходящим нагруженным поршнем.

При изобарном процессе, согласно формуле , передаваемое газу количество теплоты идет на изменение его внутренней энергии ΔU и на совершение им работы A" при постоянном давлении:

Q = ΔU + A".

Работа идеального газа определяется по графику зависимости p(V) для изобарного процесса (A" = pΔV ).

Для идеального газа при изобарном процессе объем пропорционален температуре , в реальных газах часть теплоты расходуется на изменение средней энергии взаимодействия частиц.

Адиабатический процесс.

Адиабатический процесс (адиабатный процесс) — это термодинамический процесс, происходящий в системе без теплообмена с окружающей средой (Q = 0) .

Адиабатическая изоляция системы приближенно достигается в сосудах Дьюара, в так называемых адиабатных оболочках. На адиабатически изолированную систему не оказывает влияния изменение температуры окружающих тел. Ее внутренняя энергия U может меняться только за счет работы, совершаемой внешними телами над системой, или самой системой.

Согласно первому началу термодинамики (ΔU = А + Q ), в адиабатной системе

ΔU = A ,

где A — работа внешних сил.

При адиабатном расширении газа А < 0 . Следовательно,

,

что означает уменьшение температуры при адиабатном расширении. Оно приводит к тому, что дав-ление газа уменьшается более резко, чем при изотермическом процессе. На рисунке ниже адиабата 1-2, проходящая между двумя изотермами, наглядно иллюстрирует сказанное. Площадь под адиабатой численно равна работе, совершаемой газом при его адиабатическом расширении от объема V 1 , до V 2 .

Адиабатное сжатие приводит к повышению температуры газа, т. к. в результате упругих соударений молекул газа с поршнем их средняя кинетическая энергия возрастает, в отличие от расширения, когда она уменьшается (в первом случае скорости молекул газа увеличиваются, во втором — уменьшаются).

Резкое нагревание воздуха при адиабатическом сжатии используется в двигателях Дизеля.

Уравнение теплового баланса.

В замкнутой (изолированной от внешних тел) термодинамической системе изменение внутрен-ней энергии какого-либо тела системы ΔU 1 не может приводить к изменению внутренней энергии всей системы. Следовательно,

Если внутри системы не совершается работа никакими телами, то, согласно первому закону термодинамики, изменение внутренней энергии любого тела происходит только за счет обмена теплом с другими телами этой системы: ΔU i = Q i . Учитывая , получим:

Это уравнение называется уравнением теплового баланса . Здесь Q i - количество теплоты , по-лученное или отданное i -ым телом. Любое из количеств теплоты Q i может означать теплоту, выделяемую или поглощаемому при плавлении какого-либо тела, сгорании топлива, испарении или конденсации пара, если такие процессы происходят с различными телами системы, и будут определятся соответствующими соотношениями.

Уравнение теплового баланса является математическим выражением закона сохранения энер-гии при теплообмене .

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений.

Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; независимо от того идет ли процесс в прямом или в обратном направлении. Реальные процессы сопровождаются рассеянием энергии (из-за трения, теплопроводности и т.д.), которая нами не рассматривается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по 2-м причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения КПД реальных тепловых двигателей.

Работа газа при изменении его объема.

Работа совершается только тогда, когда изменяется объем.

Найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде. Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

A=Fdl=pSdl=pdV, где S-площадь поршня, Sdl=dV-изменение объема системы. Таким образом, A= pdV.(1)

Полную работу А, совершаемую газом при изменении его объема от V1 до V2, найдем интегрированием формулы (1): A= pdV(от V1 до V2).(2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

П

Полная работа газа будет равна площади фигуры, ограниченной осью абсцисс, кривой и значениями V1,V2.

роизведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатах p,V.

Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев их неравновесностью можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному).

Первое начало термодинамики.

Существует 2 способа обмена энергией между телами:

    передача энергии через перенос тепла (посредством теплопередачи);

    через совершение работы.

Таким образом, можно говорить о 2-х формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики:

∆U=Q-A или Q=∆U+A.(1)

Т.е, теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Это выражение в дифференциальной форме будет иметь вид Q=dU+A(2) , где dU- бесконечно малое изменение внутренней энергии системы, A- элементарная работа, Q – бесконечно малое количество теплоты.

Из формулы (1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях(Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ∆U=0. Тогда, согласно 1-му началу термодинамики, A=Q,

Т.е вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, - невозможен (одна из формулировок 1-го начала термодинамики).

Применение 1-го начала термодинамики к изопроцессам и к адиабатическому процессу.

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V = const )

При таком процессе газ не совершает работы над внешними телами, т.е A=pdV=0.

Тогда, из 1-го начала термодинамики следует, что вся теплота, переданная телу, идет на увеличение его внутренней энергии: Q=dU. Зная, что dU m =C v dT.

Тогда для произвольной массы газа получим Q= dU=m\M* C v dT.

Изобарный процесс (p = const ).

При этом процессе работа газа при увеличении объема от V1 до V2 равна A= pdV(от V1 до V2)=p(V2-V1) и определяется площадью фигуры, ограниченной осью абсцисс, кривой p=f(V) и значениями V1,V2. Если вспомнить ур-е Менделеева-Клапейрона для выбранных нами 2-х состояний, то

pV 1 =m\M*RT 1 , pV 2 =m\M*RT 2 , откуда V 1 - V 2 = m\M*R\p(T 2 - T 1). Тогда выражение для работы изобарного расширения примет вид A= m\M*R(T 2 - T 1)(1.1).

При изобарном процессе при сообщении газу массой m количества теплоты

Q=m\M*C p dT его внутренняя энергия возрастает на величину dU=m\M*C v dT. При этом газ совершает работу, определяемую выражением (1.1).

Изотермический процесс (T = const ).

Этот процесс описывается законом Бойля-Мариотта: pV=const.

Найдем работу изотермического расширения газа: A= pdV(от V1 до V2)= m/M*RTln(V2/V1)=m/M*RTln(p1/p2).

Т.к при Т=const внутренняя энергия идеального газа не изменяется: dU=m/M* C v dT=0, то из 1-го начала термодинамики (Q=dU+A) следует, что для изотермического процесса Q=A, т.е все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил: Q=A=m/M*RTln(p1/p2)=m/M*RTln(V2

Следовательно, чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Для систем, в к-рых существ, значение имеют тепловые процессы (поглощение или выделение тепла). Согласно первому началу термодинамики , термодинамич. система (напр., пар в тепловой машине) может совершать работу только за счет своей внутр. энергии или к.-л. внеш. источника энергии. Первое начало термодинамики часто формулируют как невозможность существования вечного двигателя первого рода, к-рый совершал бы работу, не черпая энергию из нек-рого источника.

П ервое начало термодинамики вводит представление о внутренней энергии системы как ф-ции состояния. При сообщении системе нек-рого кол-ва теплоты Q происходит изменение внутр. энергии системы DU и система совершает работу А:

DU = Q + А.

П ервое начало термодинамики утверждает, что каждое состояние системы характеризуется определенным значением внутр. энергии U, независимо от того, каким путем приведена система в данное состояние. В отличие от значений U значения A и Q зависят от процесса, приведшего к изменению состояния системы. Если начальное и конечное состояния a и b бесконечно близки (переходы между такими состояниями наз. инфи-нитезимальными процессами), первое начало термодинамики записывается в виде:

Это означает, что бесконечно малое изменение внутр. энергии dU является полным дифференциалом ф-ции состояния, т.е. интеграл = U b - U a , тогда как бесконечно малые кол-ва теплоты и работы не являются дифференц. величинами, т.е. интегралы от этих бесконечно малых величин зависят от выбранного пути перехода между состояниями а и b (иногда их наз. неполными дифференциалами).

Из общего кол-ва работы, производимой системой объема У, можно выделить работу обратимого изотермич. расширения под действием внеш. давления p e , равную p e V, и все остальные виды работы, каждый из к-рых можно представить произведением нек-рой обобщенной силы , действующей на систему со стороны окружающей среды , на обобщенную координату x i , изменяющуюся под воздействием соответствующей обобщенной силы. Для инфинитези-мального процесса


П ервое начало термодинамики позволяет рассчитать макс. работу, получаемую при изотермич. расширении идеального газа , изотермич. испарении жидкости при пост. давлении , устанавливать законы адиабатич. расширения газов и др. Первое начало термодинамики является основой термохимии , рассматривающей системы, в к-рых теплота поглощается или выделяется в результате хим. р-ций, фазовых превращ. или растворения (разбавления р-ров).

Если система обменивается со средой не только энергией, но и в-вом (см. Открытая система), изменение внутр. энергии системы при переходе из начального состояния в конечное включает помимо работы А и теплоты Q еще и т. наз. энергию массы Z. Бесконечно малое кол-во энергии массы в инфинитезимальном процессе определяется хим. потенциалами m k каждого из компонентов системы : = , где dN k - бесконечно малое изменение числа молей k-гo компонента в результате обмена со средой.

В случае квазистатич. процесса, при к-ром система в каждый момент времени находится в равновесии с окружающей средой , первое начало термодинамики в общем виде имеет след. мат. выражение:


где p и m k равны соответствующим значениям для

ПЕРВОЕ НАЧАЛО ТЕРМОДИНАМИКИ И ЕГО ПРИМЕНЕНИЕ


Основные определения

Химическая термодинамика применяет положения и законы общей термодинамики к изучению химических явлений. Для вывода закономерностей химической термодинамики нужно знать начальное и конечное состояния системы, а также внешние условия, при которых протекает процесс (температура, давление и т. п.). Химическая термодинамика не позволяет делать какие-либо выводы о внутреннем строении вещества и механизме протекания процессов. В этом заключается ограниченность термодинамического метода.

В химической термодинамике применяются те же понятия, термины и величины, что и в общей термодинамике.

Системой называется отдельное тело или группа тел, находящихся во взаимодействии и условно обособленных от окружающей среды.

Изолированной системой называют такую систему, которая не обменивается теплотой и работой с окружающей средой, т. е. энергия и объем которой постоянны.

Состояние системы - совокупность физических и химических свойств, характеризующих эту систему.

Состояние термодинамической системы характеризуется термодинамическими параметрами. К термодинамическим параметрам относятся температура, давление, объем, концентрация и др.

Термодинамическим процессом называется всякое изменение в системе, связанное с изменением хотя бы одного из термодинамических параметров. Если изменение параметра зависит только от начального и конечного состояния и не зависит от пути процесса, то такой параметр называется функцией состояния.

Круговым процессом, или циклом, называется процесс, при котором термодинамическая система, выйдя из некоторого начального состояния и претерпев ряд изменений, возвращается в то же самое состояние; в этом процессе изменение любого параметра состояния равно нулю. В зависимости от условий протекания различают процессы: изобарный, изотермный, адиабатный, изохорный, изобарно-изотермный и др.

Внутренняя энергия, теплота и работа. Первое начало термодинамики

Движение является неотъемлемым свойством материи. Движение проявляется в разных формах, качественно отличающихся друг от друга, но взаимосвязанных между собой и превращающихся друг в друга. Мерой движения является энергия. В химической термодинамике важное значение имеет понятие внутренней энергии.

Внутренней энергией системы называется сумма потенциальной энергии взаимодействия всех частиц тела между собой и кинетической энергии их движения, т. е. внутренняя энергия системы складывается из энергии поступательного и вращательного движения молекул, энергии внутримолекулярного колебательного движения атомов и атомных групп, составляющих молекулы, энергии вращения электронов в атомах, энергии, заключающейся в ядрах атомов, энергии межмолекулярного взаимодействия и других видов энергии. Внутренняя энергия - это общий запас энергии системы за вычетом кинетической энергии системы в целом и ее потенциальной энергии положения. Абсолютная величина внутренней энергии тела неизвестна, но для применения химической термодинамики к изучению химических явлений важно знать только изменение внутренней энергии при переходе системы из одного состояния в другое.

Все изменения внутренней энергии при ее переходе от одного тела к другому можно разбить на две группы. В первую группу входит форма перехода энергии за счет хаотического столкновения молекул двух соприкасающихся тел. Мерой передаваемой таким способом энергии является теплота.

Во вторую группу входят многие формы перехода энергии при перемещении масс, состоящих из большого числа частиц, под действием каких-либо сил. Сюда относятся поднятие тел в поле тяготения, переход электричества от большего к меньшему потенциалу, расширение газа и т. п. Общей мерой передаваемой таким способом энергии является работа.

Во многих процессах передача внутренней энергии может осуществляться частично в виде теплоты и частично в виде работы. Таким образом, теплота и работа характеризуют качественно и количественно две различные формы передачи энергии от одного тела к другому; они измеряются в тех же единицах, что и энергия.

Работу или энергию любого вида можно представить как произведение двух факторов: фактора интенсивности на изменение фактора емкости, называемого также фактором экстенсивности (если фактор интенсивности остается постоянным во время процесса). Так, например, обычная механическая работа равна произведению приложенной силы на приращение пути. Если две системы могут взаимодействовать, то они образуют одну общую систему, причем фактор емкости новой системы равен сумме факторов емкости составляющих ее частей при условии, если факторы интенсивности обеих исходных систем одинаковы. Если факторы интенсивности исходных систем неодинаковы, то в общей системе начинается процесс, протекающий в сторону выравнивания факторов интенсивности за счет изменения соответствующих факторов емкости. Так, например, давления выравниваются за счет изменения объемов. Взаимосвязь между внутренней энергией, работой и теплотой устанавливается на основе первого начала термодинамики. Первое начало термодинамики представляет собой постулат, вытекающий из многовекового опыта человечества. Существует ряд формулировок первого начала термодинамики, которые равноценны друг другу и вытекают одна из другой. Если одну из них рассматривать как исходную, то другие получаются из нее как следствия.

Первое начало термодинамики непосредственно связано с законом сохранения энергии и утверждает, что в любой изолированной системе запас энергии остаётся постоянным. Отсюда следует закон эквивалентности различных форм энергии: разные формы энергии переходят друг в друга в строго эквивалентных количествах. Первое начало можно выразить и в такой форме: вечный двигатель первого рода невозможен, т. е. невозможно построить машину, которая давала бы механическую работу, не затрачивая на это соответствующего количества молекулярной энергии; или внутренняя энергия является функцией состояния, т. е. ее изменение не зависит от пути процесса, а зависит только от начального и конечного состояния системы.

Докажем, что внутренняя энергия является функцией состояния. Пусть при переходе системы из первого состояния во второе по одному пути изменение внутренней энергии равно ΔUа, а по другому пути - ΔUb,т. е. предположим вначале, что изменение внутренней энергии зависит от пути процесса. Если величины ΔUа и ΔUbразличны, то, изолируя систему и переходя из состояния 7 в состояние 2 одним путчем, а затем обратно из состояния 2 в состояние 1 другим путем, получали бы выигрыш или потерю энергии ΔUb-ΔUа-но по условию система изолированная, т. е. она не обменивается теплом и работой с окружающей средой и запас ее энергии согласно первому началу термодинамики должен быть постоянным. Таким образом, сделанное предположение ошибочно. Изменение внутренней энергии при переходе системы из состояния 1 в состояние 2 не зависит от пути процесса, т. е. внутренняя энергия является функцией состояния.

Изменение внутренней энергии ΔUсистемы может происходить за счет обмена теплотой Qи работой А с окружающей средой. Условились считать положительными величинами теплоту, полученную системой и работу, совершенную системой. Тогда из первого начале термодинамики следует что полученная системой извне теплота Qрасходуется на приращение внутренней энергии ΔUи работу А, совершенную системой, т, е.

Q = ΔU + A.(II, 1)


Уравнение (II, 1) представляет собой математическую формулировку первого начала термодинамики. Величины ΔU, Qи А в уравнении (II, 1) могут иметь как положительное, так и отрицательное значение в зависимости от характера процесса. Если, например, все три величины отрицательны, то это означает, что отданная системой внешней среде теплота равна убыли внутренней энергии плюс полученная системой работа.

В отличие от внутренней энергии, теплота Qи работа А не являются функциями состояния, они зависят от пути процесса. Разность их

Q- A= ΔU (II, 2)

от пути процесса не зависит. Для бесконечно малого изменения этих величин имеем

термодинамика эндотермический реакция

δQ = dU + δA,(II,3)

где dU- полный дифференциал внутренней энергии системы; δQ- бесконечно малое количество теплоты; δА - бесконечно малое количество работы.

Работа расширения идеального газа в разных процессах

Для многих систем единственный вид работы - работа расширения. Практическое значение имеет обычно работа расширения газа, причем многие газы при достаточно низких давлениях и сравнительно высоких температурах приближенно подчиняются законам идеальных газов. Рассмотрим математические соотношения для вычисления работы расширения идеального газа в разных процессах. При расширении газа совершается работа, которая вычисляется по уравнению


или в интегральной форме

,(11,6)

Интегрирование уравнения (II, 6) возможно только для процесса расширения или сжатия газа в условиях, близких к равновесным. Совершаемая при этом работа является наибольшей и называется максимальной работой.

Для интегрирования уравнения (II, 6) нужно знать зависимость между давлением и объемом газа, т. е. уравнение состояния газа.

Эта зависимость для идеального газа описывается уравнением состояния Менделеева - Клапейрона:

где n - число молей идеального газа; R- универсальная газовая постоянная, равная 8,314 дж/моль-град.

Рассмотрим выражения для максимальной работы расширения идеального газа в пяти процессах: изобарном, изотермном, адиабатном, изохорном и изобарно-изотермном.

1. Изобарный процесс осуществляется при постоянном давлении (р = const). При этом из уравнения (II, 6) получаем

error: Content is protected !!